RZ/A1H CMSIS-RTOS RTX BSP for GR-PEACH.

Dependents:   GR-PEACH_Azure_Speech ImageZoomInout_Sample ImageRotaion_Sample ImageScroll_Sample ... more

Fork of R_BSP by Daiki Kato

SSIF

The SSIF driver implements transmission and reception functionality which uses the SSIF in the RZ/A Series.

Hello World!

Import program

00001 #include "mbed.h"
00002 #include "R_BSP_Ssif.h"
00003 #include "sine_data_tbl.h"
00004 
00005 //I2S send only, The upper limit of write buffer is 8.
00006 R_BSP_Ssif ssif(P4_4, P4_5, P4_7, P4_6, 0x80, 8, 0);
00007 
00008 static void callback_ssif_write_end(void * p_data, int32_t result, void * p_app_data) {
00009     if (result < 0) {
00010         printf("ssif write callback error %d\n", result);
00011     }
00012 }
00013 
00014 int main() {
00015     rbsp_data_conf_t   ssif_write_end_conf = {&callback_ssif_write_end, NULL};
00016     ssif_channel_cfg_t ssif_cfg;
00017     int32_t            result;
00018 
00019     //I2S Master, 44.1kHz, 16bit, 2ch
00020     ssif_cfg.enabled                = true;
00021     ssif_cfg.int_level              = 0x78;
00022     ssif_cfg.slave_mode             = false;
00023     ssif_cfg.sample_freq            = 44100u;
00024     ssif_cfg.clk_select             = SSIF_CFG_CKS_AUDIO_X1;
00025     ssif_cfg.multi_ch               = SSIF_CFG_MULTI_CH_1;
00026     ssif_cfg.data_word              = SSIF_CFG_DATA_WORD_16;
00027     ssif_cfg.system_word            = SSIF_CFG_SYSTEM_WORD_32;
00028     ssif_cfg.bclk_pol               = SSIF_CFG_FALLING;
00029     ssif_cfg.ws_pol                 = SSIF_CFG_WS_LOW;
00030     ssif_cfg.padding_pol            = SSIF_CFG_PADDING_LOW;
00031     ssif_cfg.serial_alignment       = SSIF_CFG_DATA_FIRST;
00032     ssif_cfg.parallel_alignment     = SSIF_CFG_LEFT;
00033     ssif_cfg.ws_delay               = SSIF_CFG_DELAY;
00034     ssif_cfg.noise_cancel           = SSIF_CFG_DISABLE_NOISE_CANCEL;
00035     ssif_cfg.tdm_mode               = SSIF_CFG_DISABLE_TDM;
00036     ssif_cfg.romdec_direct.mode     = SSIF_CFG_DISABLE_ROMDEC_DIRECT;
00037     ssif_cfg.romdec_direct.p_cbfunc = NULL;
00038     result = ssif.ConfigChannel(&ssif_cfg);
00039     if (result < 0) {
00040         printf("ssif config error %d\n", result);
00041     }
00042 
00043     while (1) {
00044         //The upper limit of write buffer is 8.
00045         result = ssif.write((void *)sin_data_44100Hz_16bit_2ch, 
00046                             sizeof(sin_data_44100Hz_16bit_2ch), &ssif_write_end_conf);
00047         if (result < 0) {
00048             printf("ssif write api error %d\n", result);
00049         }
00050     }
00051 }

API

Import library

Public Member Functions

R_BSP_Ssif (PinName sck, PinName ws, PinName tx, PinName rx, uint8_t int_level=0x80, int32_t max_write_num=16, int32_t max_read_num=16)
Constructor.
virtual ~R_BSP_Ssif ()
Destructor.
int32_t GetSsifChNo (void)
Get a value of SSIF channel number.
bool ConfigChannel (const ssif_channel_cfg_t *const p_ch_cfg)
Save configuration to the SSIF driver.
bool GetStatus (uint32_t *const p_status)
Get a value of SSISR register.
int32_t write (void *const p_data, uint32_t data_size, const rbsp_data_conf_t *const p_data_conf=NULL)
Write count bytes to the file associated.
int32_t read (void *const p_data, uint32_t data_size, const rbsp_data_conf_t *const p_data_conf=NULL)
Read count bytes to the file associated.

Protected Member Functions

void write_init (void *handle, void *p_func_a, int32_t max_buff_num=16)
Write init.
void read_init (void *handle, void *p_func_a, int32_t max_buff_num=16)
Read init.

Interface

See the Pinout page for more details


SCUX

The SCUX module consists of a sampling rate converter, a digital volume unit, and a mixer.
The SCUX driver can perform asynchronous and synchronous sampling rate conversions using the sampling rate converter. The SCUX driver uses the DMA transfer mode to input and output audio data.

Hello World!

Import program

00001 #include "mbed.h"
00002 #include "R_BSP_Scux.h"
00003 #include "USBHostMSD.h"
00004 
00005 R_BSP_Scux scux(SCUX_CH_0);
00006 
00007 #define WRITE_SAMPLE_NUM (128)
00008 #define READ_SAMPLE_NUM  (2048)
00009 
00010 const short sin_data[WRITE_SAMPLE_NUM] = {
00011  0x0000,0x0000,0x0C8C,0x0C8C,0x18F9,0x18F9,0x2528,0x2528
00012 ,0x30FB,0x30FB,0x3C56,0x3C56,0x471C,0x471C,0x5133,0x5133
00013 ,0x5A82,0x5A82,0x62F1,0x62F1,0x6A6D,0x6A6D,0x70E2,0x70E2
00014 ,0x7641,0x7641,0x7A7C,0x7A7C,0x7D89,0x7D89,0x7F61,0x7F61
00015 ,0x7FFF,0x7FFF,0x7F61,0x7F61,0x7D89,0x7D89,0x7A7C,0x7A7C
00016 ,0x7641,0x7641,0x70E2,0x70E2,0x6A6D,0x6A6D,0x62F1,0x62F1
00017 ,0x5A82,0x5A82,0x5133,0x5133,0x471C,0x471C,0x3C56,0x3C56
00018 ,0x30FB,0x30FB,0x2528,0x2528,0x18F9,0x18F9,0x0C8C,0x0C8C
00019 ,0x0000,0x0000,0xF374,0xF374,0xE707,0xE707,0xDAD8,0xDAD8
00020 ,0xCF05,0xCF05,0xC3AA,0xC3AA,0xB8E4,0xB8E4,0xAECD,0xAECD
00021 ,0xA57E,0xA57E,0x9D0F,0x9D0F,0x9593,0x9593,0x8F1E,0x8F1E
00022 ,0x89BF,0x89BF,0x8584,0x8584,0x8277,0x8277,0x809F,0x809F
00023 ,0x8001,0x8001,0x809F,0x809F,0x8277,0x8277,0x8584,0x8584
00024 ,0x89BF,0x89BF,0x8F1E,0x8F1E,0x9593,0x9593,0x9D0F,0x9D0F
00025 ,0xA57E,0xA57E,0xAECD,0xAECD,0xB8E4,0xB8E4,0xC3AA,0xC3AA
00026 ,0xCF05,0xCF05,0xDAD8,0xDAD8,0xE707,0xE707,0xF374,0xF374
00027 };
00028 
00029 #if defined(__ICCARM__)
00030 #pragma data_alignment=4
00031 short write_buff[WRITE_SAMPLE_NUM]@ ".mirrorram";
00032 #pragma data_alignment=4
00033 short read_buff[READ_SAMPLE_NUM]@ ".mirrorram";
00034 #else
00035 short write_buff[WRITE_SAMPLE_NUM] __attribute((section("NC_BSS"),aligned(4)));
00036 short read_buff[READ_SAMPLE_NUM] __attribute((section("NC_BSS"),aligned(4)));
00037 #endif
00038 
00039 void scux_setup(void);
00040 void write_task(void const*);
00041 void file_output_to_usb(void);
00042 
00043 int main(void) {
00044     // set up SRC parameters.
00045     scux_setup();
00046 
00047     printf("Sampling rate conversion Start.\n");
00048     // start accepting transmit/receive requests.
00049     scux.TransStart();
00050 
00051     // create a new thread to write to SCUX.
00052     Thread writeTask(write_task, NULL, osPriorityNormal, 1024 * 4);
00053 
00054     // receive request to the SCUX driver.
00055     scux.read(read_buff, sizeof(read_buff));
00056     printf("Sampling rate conversion End.\n");
00057 
00058     // output binary file to USB port 0.
00059     file_output_to_usb();
00060 }
00061 
00062 void scux_setup(void) {
00063     scux_src_usr_cfg_t src_cfg;
00064 
00065     src_cfg.src_enable           = true;
00066     src_cfg.word_len             = SCUX_DATA_LEN_16;
00067     src_cfg.mode_sync            = true;
00068     src_cfg.input_rate           = SAMPLING_RATE_48000HZ;
00069     src_cfg.output_rate          = SAMPLING_RATE_96000HZ;
00070     src_cfg.select_in_data_ch[0] = SELECT_IN_DATA_CH_0;
00071     src_cfg.select_in_data_ch[1] = SELECT_IN_DATA_CH_1;
00072 
00073     scux.SetSrcCfg(&src_cfg);
00074 }
00075 
00076 void scux_flush_callback(int scux_ch) {
00077     // do nothing
00078 }
00079 
00080 void write_task(void const*) {
00081     memcpy(write_buff, sin_data, sizeof(write_buff));
00082     // send request to the SCUX driver.
00083     scux.write(write_buff, sizeof(write_buff));
00084 
00085     // stop the acceptance of transmit/receive requests.
00086     scux.FlushStop(&scux_flush_callback);
00087 }
00088 
00089 void file_output_to_usb(void) {
00090     FILE * fp = NULL;
00091     int i;
00092 
00093     USBHostMSD msd("usb");
00094 
00095     // try to connect a MSD device
00096     for(i = 0; i < 10; i++) {
00097         if (msd.connect()) {
00098             break;
00099         }
00100         wait(0.5);
00101     }
00102 
00103     if (msd.connected()) {
00104         fp = fopen("/usb/scux_input.dat", "rb");
00105         if (fp == NULL) {
00106             fp = fopen("/usb/scux_input.dat", "wb");
00107             if (fp != NULL) {
00108                 fwrite(write_buff, sizeof(short), WRITE_SAMPLE_NUM, fp);
00109                 fclose(fp);
00110                 printf("Output binary file(Input data) to USB.\n");
00111             } else {
00112                 printf("Failed to output binary file(Input data).\n");
00113             }
00114         } else {
00115             printf("Binary file(Input data) exists.\n");
00116             fclose(fp);
00117         }
00118 
00119         fp = fopen("/usb/scux_output.dat", "rb");
00120         if (fp == NULL) {
00121             fp = fopen("/usb/scux_output.dat", "wb");
00122             if (fp != NULL) {
00123                 fwrite(read_buff, sizeof(short), READ_SAMPLE_NUM, fp);
00124                 fclose(fp);
00125                 printf("Output binary file(Output data) to USB.\n");
00126             } else {
00127                 printf("Failed to output binary file(Output data).\n");
00128             }
00129         } else {
00130             printf("Binary file(Output data) exists.\n");
00131             fclose(fp);
00132         }
00133     } else {
00134         printf("Failed to connect to the USB device.\n");
00135     }
00136 } 

API

Import library

Public Member Functions

R_BSP_Scux ( scux_ch_num_t channel, uint8_t int_level=0x80, int32_t max_write_num=16, int32_t max_read_num=16)
Constructor: Initializes and opens the channel designated by the SCUX driver.
virtual ~R_BSP_Scux (void)
Destructor: Closes the channel designated by the SCUX driver and exits.
bool TransStart (void)
Sets up the SCUX HW and starts operation, then starts accepting write/read requests.
bool FlushStop (void(*const callback)(int32_t))
Stops accepting write/read requests, flushes out all data in the SCUX that is requested for transfer, then stops the HW operation.
bool ClearStop (void)
Discards all data in the SCUX that is requested for transfer before stopping the hardware operation and stops accepting write/read requests.
bool SetSrcCfg (const scux_src_usr_cfg_t *const p_src_param)
Sets up SRC parameters.
bool GetWriteStat (uint32_t *const p_write_stat)
Obtains the state information of the write request.
bool GetReadStat (uint32_t *const p_read_stat)
Obtains the state information of the read request.
int32_t write (void *const p_data, uint32_t data_size, const rbsp_data_conf_t *const p_data_conf=NULL)
Write count bytes to the file associated.
int32_t read (void *const p_data, uint32_t data_size, const rbsp_data_conf_t *const p_data_conf=NULL)
Read count bytes to the file associated.

Protected Member Functions

void write_init (void *handle, void *p_func_a, int32_t max_buff_num=16)
Write init.
void read_init (void *handle, void *p_func_a, int32_t max_buff_num=16)
Read init.

Write request state transition diagram

/media/uploads/dkato/scux_write_state_transition.png

Read request state transition diagram

/media/uploads/dkato/scux_read_state_transition.png

common/R_BSP_Scux.cpp

Committer:
dkato
Date:
2016-05-31
Revision:
11:fb9eda52224e
Parent:
7:30ebba78fff0

File content as of revision 11:fb9eda52224e:

/*******************************************************************************
* DISCLAIMER
* This software is supplied by Renesas Electronics Corporation and is only
* intended for use with Renesas products. No other uses are authorized. This
* software is owned by Renesas Electronics Corporation and is protected under
* all applicable laws, including copyright laws.
* THIS SOFTWARE IS PROVIDED "AS IS" AND RENESAS MAKES NO WARRANTIES REGARDING
* THIS SOFTWARE, WHETHER EXPRESS, IMPLIED OR STATUTORY, INCLUDING BUT NOT
* LIMITED TO WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE
* AND NON-INFRINGEMENT. ALL SUCH WARRANTIES ARE EXPRESSLY DISCLAIMED.
* TO THE MAXIMUM EXTENT PERMITTED NOT PROHIBITED BY LAW, NEITHER RENESAS
* ELECTRONICS CORPORATION NOR ANY OF ITS AFFILIATED COMPANIES SHALL BE LIABLE
* FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES FOR
* ANY REASON RELATED TO THIS SOFTWARE, EVEN IF RENESAS OR ITS AFFILIATES HAVE
* BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.
* Renesas reserves the right, without notice, to make changes to this software
* and to discontinue the availability of this software. By using this software,
* you agree to the additional terms and conditions found by accessing the
* following link:
* http://www.renesas.com/disclaimer*
* Copyright (C) 2015 Renesas Electronics Corporation. All rights reserved.
*******************************************************************************/

#include "r_bsp_cmn.h"
#include "R_BSP_Scux.h"
#include "scux_if.h"

#define CH_ERR_NUM                  (-1)     /* Channel error number */
#define INT_LEVEL_MAX               (0xF7)   /* The maximum value of the interrupt level */
#define REQ_BUFF_NUM_MIN            (1)      /* The minimum value of the request buffer */
#define REQ_BUFF_NUM_MAX            (128)    /* The maximum value of the request buffer */
#define INPUT_DIV_INIT_VALUE        (1000U)  /* The initial value of input divide ratio */
#define OUTPUT_DIV_INIT_VALUE       (0U)     /* The initial value of output divide ratio  */
#define INPUT_WS_INIT_VALUE         (1U)     /* The initial value of input WS frequency */
#define OUTPUT_WS_INIT_VALUE        (96000U) /* The initial value of output WS frequency */
#define FREQ_TIOC3A_INIT_VALUE      (1U)     /* The initial value of frequency of TIOC3 */
#define FREQ_TIOC4A_INIT_VALUE      (1U)     /* The initial value of frequency of TIOC4 */
#define WAIT_SAMPLE_INIT_VALUE      (0U)     /* The initial value of wait time */
#define MIN_RATE_PER_INIT_VALUE     (98U)    /* The initial value of minimum rate */
#define DIV_RATIO_CLK_AUDIO_22050HZ (1024U)  /* Divide ratio when the frequency is 22050Hz */
#define DIV_RATIO_CLK_AUDIO_44100HZ (512U)   /* Divide ratio when the frequency is 44100Hz */
#define DIV_RATIO_CLK_AUDIO_88200HZ (256U)   /* Divide ratio when the frequency is 88200Hz */
#define DIV_RATIO_CLK_USB_24000HZ   (2000U)  /* Divide ratio when the frequency is 24000Hz */
#define DIV_RATIO_CLK_USB_32000HZ   (1500U)  /* Divide ratio when the frequency is 36000Hz */
#define DIV_RATIO_CLK_USB_48000HZ   (1000U)  /* Divide ratio when the frequency is 48000Hz */
#define DIV_RATIO_CLK_USB_64000HZ   (750U)   /* Divide ratio when the frequency is 64000Hz */
#define DIV_RATIO_CLK_USB_96000HZ   (500U)   /* Divide ratio when the frequency is 96000Hz */

static bool set_src_init_cfg(scux_src_cfg_t * const src_cfg);

R_BSP_Scux::R_BSP_Scux(scux_ch_num_t channel, uint8_t int_level, int32_t max_write_num, int32_t max_read_num) {
    scux_channel_cfg_t scux_cfg;
    int32_t result;
    bool    init_result;

    if (channel >= SCUX_CH_NUM) {
        result = EERROR;
    } else if (int_level > INT_LEVEL_MAX) {
        result = EERROR;
    } else if ((max_write_num < REQ_BUFF_NUM_MIN) || (max_write_num > REQ_BUFF_NUM_MAX)) {
        result = EERROR;
    } else if ((max_read_num < REQ_BUFF_NUM_MIN) || (max_read_num > REQ_BUFF_NUM_MAX)) {
        result = EERROR;
    } else {
        result = R_BSP_CMN_Init();
        if (result == ESUCCESS) {
            scux_ch = (int32_t)channel;

            scux_cfg.enabled       = true;
            scux_cfg.int_level     = int_level;

            switch (channel) {
                case SCUX_CH_0:
                    scux_cfg.route = SCUX_ROUTE_SRC0_MEM;
                    break;
                case SCUX_CH_1:
                    scux_cfg.route = SCUX_ROUTE_SRC1_MEM;
                    break;
                case SCUX_CH_2:
                    scux_cfg.route = SCUX_ROUTE_SRC2_MEM;
                    break;
                case SCUX_CH_3:
                    scux_cfg.route = SCUX_ROUTE_SRC3_MEM;
                    break;
                default:
                    /* NOTREACHED on At the time of a normal performance */
                    scux_cfg.route = SCUX_ROUTE_SRC0_MEM;
                    break;
            }

            init_result = set_src_init_cfg(&scux_cfg.src_cfg);
            if (init_result != false) {
                init_result = init_channel(R_SCUX_MakeCbTbl_mbed(), (int32_t)channel, &scux_cfg, max_write_num, max_read_num);
                if (init_result == false) {
                    result = EERROR;
                }
            } else {
                result = EERROR;
            }
        }
    }

    if (result != ESUCCESS) {
        scux_ch   = CH_ERR_NUM;
    }
}

R_BSP_Scux::~R_BSP_Scux(void) {
}

bool R_BSP_Scux::TransStart(void) {
    return ioctl(SCUX_IOCTL_SET_START, NULL);
}

bool R_BSP_Scux::FlushStop(void (* const callback)(int32_t)) {
    return ioctl(SCUX_IOCTL_SET_FLUSH_STOP, (void *)callback);
}

bool R_BSP_Scux::ClearStop(void) {
    return ioctl(SCUX_IOCTL_SET_CLEAR_STOP, NULL);
}

bool R_BSP_Scux::SetSrcCfg(const scux_src_usr_cfg_t * const p_src_param) {
    scux_src_cfg_t src_cfg;
    bool    init_result;
    bool    ret = true;
    int32_t i;

    if (scux_ch == CH_ERR_NUM) {
        ret = false;
    } else if (p_src_param == NULL) {
        ret = false;
    } else if ((p_src_param->mode_sync != false) && (p_src_param->src_enable == false)) {
        ret = false;
    } else {
        init_result = set_src_init_cfg(&src_cfg);
        if (init_result != true) {
            ret = false;
        } else {
            src_cfg.src_enable = p_src_param->src_enable;
            src_cfg.mode_sync  = p_src_param->mode_sync;

            switch (p_src_param->word_len) {
                case SCUX_DATA_LEN_24:
                    /* fall through */
                case SCUX_DATA_LEN_16:
                    /* fall through */
                case SCUX_DATA_LEN_16_TO_24:
                    src_cfg.word_len = p_src_param->word_len;
                    break;
                default:
                    ret = false;
                    break;
            }

            if (ret == true) {
                if (p_src_param->mode_sync != false) {
                    switch (p_src_param->input_rate) {
                        case SAMPLING_RATE_8000HZ:
                            src_cfg.input_rate_sync = SCUX_SYNC_RATE_8;
                            break;
                        case SAMPLING_RATE_11025HZ:
                            src_cfg.input_rate_sync = SCUX_SYNC_RATE_11_025;
                            break;
                        case SAMPLING_RATE_12000HZ:
                            src_cfg.input_rate_sync = SCUX_SYNC_RATE_12;
                            break;
                        case SAMPLING_RATE_16000HZ:
                            src_cfg.input_rate_sync = SCUX_SYNC_RATE_16;
                            break;
                        case SAMPLING_RATE_22050HZ:
                            src_cfg.input_rate_sync = SCUX_SYNC_RATE_22_05;
                            break;
                        case SAMPLING_RATE_24000HZ:
                            src_cfg.input_rate_sync = SCUX_SYNC_RATE_24;
                            break;
                        case SAMPLING_RATE_32000HZ:
                            src_cfg.input_rate_sync = SCUX_SYNC_RATE_32;
                            break;
                        case SAMPLING_RATE_44100HZ:
                            src_cfg.input_rate_sync = SCUX_SYNC_RATE_44_1;
                            break;
                        case SAMPLING_RATE_48000HZ:
                            src_cfg.input_rate_sync = SCUX_SYNC_RATE_48;
                            break;
                        case SAMPLING_RATE_64000HZ:
                            src_cfg.input_rate_sync = SCUX_SYNC_RATE_64;
                            break;
                        case SAMPLING_RATE_88200HZ:
                            src_cfg.input_rate_sync = SCUX_SYNC_RATE_88_2;
                            break;
                        case SAMPLING_RATE_96000HZ:
                            src_cfg.input_rate_sync = SCUX_SYNC_RATE_96;
                            break;
                        default:
                            ret = false;
                            break;
                    }
                } else {
                    switch (p_src_param->input_rate) {
                        case SAMPLING_RATE_22050HZ:
                            src_cfg.input_clk_async = SCUX_CLK_AUDIO_X1;
                            src_cfg.input_div_async = DIV_RATIO_CLK_AUDIO_22050HZ;
                            break;
                        case SAMPLING_RATE_24000HZ:
                            src_cfg.input_clk_async = SCUX_CLK_USB_X1;
                            src_cfg.input_div_async = DIV_RATIO_CLK_USB_24000HZ;
                            break;
                        case SAMPLING_RATE_32000HZ:
                            src_cfg.input_clk_async = SCUX_CLK_USB_X1;
                            src_cfg.input_div_async = DIV_RATIO_CLK_USB_32000HZ;
                            break;
                        case SAMPLING_RATE_44100HZ:
                            src_cfg.input_clk_async = SCUX_CLK_AUDIO_X1;
                            src_cfg.input_div_async = DIV_RATIO_CLK_AUDIO_44100HZ;
                            break;
                        case SAMPLING_RATE_48000HZ:
                            src_cfg.input_clk_async = SCUX_CLK_USB_X1;
                            src_cfg.input_div_async = DIV_RATIO_CLK_USB_48000HZ;
                            break;
                        case SAMPLING_RATE_64000HZ:
                            src_cfg.input_clk_async = SCUX_CLK_USB_X1;
                            src_cfg.input_div_async = DIV_RATIO_CLK_USB_64000HZ;
                            break;
                        case SAMPLING_RATE_88200HZ:
                            src_cfg.input_clk_async = SCUX_CLK_AUDIO_X1;
                            src_cfg.input_div_async = DIV_RATIO_CLK_AUDIO_88200HZ;
                            break;
                        case SAMPLING_RATE_96000HZ:
                            src_cfg.input_clk_async = SCUX_CLK_USB_X1;
                            src_cfg.input_div_async = DIV_RATIO_CLK_USB_96000HZ;
                            break;
                        default:
                            ret = false;
                            break;
                    }
                }
            }

            if (ret == true) {
                if (p_src_param->mode_sync != false) {
                    switch (p_src_param->output_rate) {
                        case SAMPLING_RATE_44100HZ:
                            src_cfg.output_rate_sync = SCUX_SYNC_RATE_44_1;
                            break;
                        case SAMPLING_RATE_48000HZ:
                            src_cfg.output_rate_sync = SCUX_SYNC_RATE_48;
                            break;
                        case SAMPLING_RATE_96000HZ:
                            src_cfg.output_rate_sync = SCUX_SYNC_RATE_96;
                            break;
                        default:
                            ret = false;
                            break;
                    }
                } else {
                    switch (p_src_param->output_rate) {
                        case SAMPLING_RATE_44100HZ:
                            src_cfg.output_ws = SAMPLING_RATE_44100HZ;
                            break;
                        case SAMPLING_RATE_48000HZ:
                            src_cfg.output_ws = SAMPLING_RATE_48000HZ;
                            break;
                        case SAMPLING_RATE_88200HZ:
                            src_cfg.output_ws = SAMPLING_RATE_88200HZ;
                            break;
                        case SAMPLING_RATE_96000HZ:
                            src_cfg.output_ws = SAMPLING_RATE_96000HZ;
                            break;
                        default:
                            ret = false;
                            break;
                    }
                }
            }

            if (ret == true) {
                for (i = 0; i < SCUX_USE_CH_2; i++) {
                    switch (p_src_param->select_in_data_ch[i]) {
                        case SELECT_IN_DATA_CH_0:
                            src_cfg.select_in_data_ch[i] = SCUX_AUDIO_CH_0;
                            break;
                        case SELECT_IN_DATA_CH_1:
                            src_cfg.select_in_data_ch[i] = SCUX_AUDIO_CH_1;
                            break;
                        default:
                            ret = false;
                            break;
                    }
                }
            }

            if (ret == true) {
                ret = ioctl(SCUX_IOCTL_SET_SRC_CFG, (void *)&src_cfg);
            }
        }
    }

    return ret;
}

bool R_BSP_Scux::GetWriteStat(uint32_t * const p_write_stat) {
    return ioctl(SCUX_IOCTL_GET_WRITE_STAT, (void *)p_write_stat);
}

bool R_BSP_Scux::GetReadStat(uint32_t * const p_read_stat) {
    return ioctl(SCUX_IOCTL_GET_READ_STAT, (void *)p_read_stat);
}

/**************************************************************************//**
* Function Name: set_src_init_cfg
* @brief         SRC configuration initialization.
*
*                Description:<br>
*                
* @param[in]     src_cfg SRC configuration. 
* @retval        true  Setting success.
*                false Setting fails.
******************************************************************************/
static bool set_src_init_cfg(scux_src_cfg_t * const src_cfg) {
    bool ret = true;

    if (src_cfg == NULL) {
        ret = false;
    } else {
        src_cfg->src_enable                         = true;
        src_cfg->use_ch                             = SCUX_USE_CH_2;
        src_cfg->word_len                           = SCUX_DATA_LEN_16;
        src_cfg->mode_sync                          = true;
        src_cfg->input_rate_sync                    = SCUX_SYNC_RATE_48;
        src_cfg->input_clk_async                    = SCUX_CLK_USB_X1;
        src_cfg->input_div_async                    = INPUT_DIV_INIT_VALUE;
        src_cfg->output_rate_sync                   = SCUX_SYNC_RATE_96;
        src_cfg->output_clk_async                   = SCUX_CLK_SSIF0_WS;
        src_cfg->output_div_async                   = OUTPUT_DIV_INIT_VALUE;
        src_cfg->input_ws                           = INPUT_WS_INIT_VALUE;
        src_cfg->output_ws                          = OUTPUT_WS_INIT_VALUE;
        src_cfg->freq_tioc3a                        = FREQ_TIOC3A_INIT_VALUE;
        src_cfg->freq_tioc4a                        = FREQ_TIOC4A_INIT_VALUE;
        src_cfg->delay_mode                         = SCUX_DELAY_NORMAL;
        src_cfg->wait_sample                        = WAIT_SAMPLE_INIT_VALUE;
        src_cfg->min_rate_percentage                = MIN_RATE_PER_INIT_VALUE;
        src_cfg->select_in_data_ch[SCUX_AUDIO_CH_0] = SCUX_AUDIO_CH_0;
        src_cfg->select_in_data_ch[SCUX_AUDIO_CH_1] = SCUX_AUDIO_CH_1;
        src_cfg->select_in_data_ch[SCUX_AUDIO_CH_2] = SCUX_AUDIO_CH_2;
        src_cfg->select_in_data_ch[SCUX_AUDIO_CH_3] = SCUX_AUDIO_CH_3;
        src_cfg->select_in_data_ch[SCUX_AUDIO_CH_4] = SCUX_AUDIO_CH_4;
        src_cfg->select_in_data_ch[SCUX_AUDIO_CH_5] = SCUX_AUDIO_CH_5;
        src_cfg->select_in_data_ch[SCUX_AUDIO_CH_6] = SCUX_AUDIO_CH_6;
        src_cfg->select_in_data_ch[SCUX_AUDIO_CH_7] = SCUX_AUDIO_CH_7;
    }

    return ret;
}