The "GR-PEACH_Audio_Playback_Sample" is a sample code that can provides high-resolution audio playback of FLAC format files. It also allows the user to audio-playback control functions such as play, pause, and stop by manipulating key switches.

Dependencies:   R_BSP TLV320_RBSP USBHost_custom

Note

For a sample program of with LCD Board,
please refer to GR-PEACH_Audio_Playback_7InchLCD_Sample.

Introduction

The "GR-PEACH_Audio_Playback_Sample" is a sample code that can provides high-resolution audio playback of FLAC format files. It also allows the user to audio-playback control functions such as play, pause, and stop by manipulating key switches.

1. Overview of the Sample Code

1.1 Software Block Diagram

Figure 1.1 shows the software block diagram.

/media/uploads/dkato/audioplayback_figure1_1x.png

1.2 Pin Definitions

Table 1.1 shows the pins that this sample code are to use.

/media/uploads/dkato/audioplayback_table1_1.png

2. Sample Code Operating Environment

This sample code runs in GR-PEACH + the Audio/Camera shield for the GR-PEACH environment. This section explains the functions of the ports that are used by this sample code.

2.1 Operating Environment

Figure 2.1 shows the configuration of the operating environment for running this sample code.

/media/uploads/dkato/audioplayback_figure2_1.png /media/uploads/1050186/figure2_2.png /media/uploads/dkato/audioplayback_figure2_3.png

2.2 List of User Operations

A list of user operations on the command line, TFT touch keys, and switch key that the user can perform for this sample code is shown in. Table 2.1.

/media/uploads/dkato/audioplayback_table2_1x.png

3. Function Outline

The functions of this sample code are summarized in Table 3.1 to Table 3.3.

/media/uploads/dkato/audioplayback_table3_1.png /media/uploads/dkato/audioplayback_table3_2.png /media/uploads/dkato/audioplayback_table3_3.png /media/uploads/dkato/audioplayback_figure3_1.png

3.1 Playback Control

The playback control that the sample code supports include play, pause, stop, skip to next, and skip to previous.

3.2 Trick Play Control

Manipulating "Repeat" alternates between "Repeat mode On" and "Repeat mode Off". The default mode is "Repeat mode On". When the repeat mode is on, the playback of the first song starts after the playback of the last song is finished. When the repeat mode is off, the sample code enters the stopped state after the playback of the last song is finished.

3.3 Acquisition of the Song Information

The information of the song being played is obtained by operating the "Play info" during the playback of the song. Table 3.4 lists the items of information that can be obtained by the "Play info" operation.

/media/uploads/dkato/audioplayback_table3_4.png

3.4 How the Folder Structure is Analyzed

The sample coded analyzes the folder structure in the breadth-first search order. The order in which files are numbered is illustrated in Table 3.5. The sample code does not sort the files by file or folder name.

/media/uploads/dkato/audioplayback_table3_5.png

4.Others

The default setting of serial communication (baud rate etc.) in mbed is shown the following link.
Please refer to the link and change the settings of your PC terminal software.
The default value of baud rate in mbed is 9600, and this application uses baud rate 9600.
https://developer.mbed.org/teams/Renesas/wiki/GR-PEACH-Getting-Started#install-the-usb-serial-communication

Revision:
0:ee40da884cfc
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/flac/src/libFLAC/include/private/float.h	Fri Oct 16 04:28:07 2015 +0000
@@ -0,0 +1,98 @@
+/* libFLAC - Free Lossless Audio Codec library
+ * Copyright (C) 2004-2009  Josh Coalson
+ * Copyright (C) 2011-2014  Xiph.Org Foundation
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * - Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * - Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * - Neither the name of the Xiph.org Foundation nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef FLAC__PRIVATE__FLOAT_H
+#define FLAC__PRIVATE__FLOAT_H
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#include "FLAC/ordinals.h"
+
+/*
+ * These typedefs make it easier to ensure that integer versions of
+ * the library really only contain integer operations.  All the code
+ * in libFLAC should use FLAC__float and FLAC__double in place of
+ * float and double, and be protected by checks of the macro
+ * FLAC__INTEGER_ONLY_LIBRARY.
+ *
+ * FLAC__real is the basic floating point type used in LPC analysis.
+ */
+#ifndef FLAC__INTEGER_ONLY_LIBRARY
+typedef double FLAC__double;
+typedef float FLAC__float;
+/*
+ * WATCHOUT: changing FLAC__real will change the signatures of many
+ * functions that have assembly language equivalents and break them.
+ */
+typedef float FLAC__real;
+#else
+/*
+ * The convention for FLAC__fixedpoint is to use the upper 16 bits
+ * for the integer part and lower 16 bits for the fractional part.
+ */
+typedef FLAC__int32 FLAC__fixedpoint;
+extern const FLAC__fixedpoint FLAC__FP_ZERO;
+extern const FLAC__fixedpoint FLAC__FP_ONE_HALF;
+extern const FLAC__fixedpoint FLAC__FP_ONE;
+extern const FLAC__fixedpoint FLAC__FP_LN2;
+extern const FLAC__fixedpoint FLAC__FP_E;
+
+#define FLAC__fixedpoint_trunc(x) ((x)>>16)
+
+#define FLAC__fixedpoint_mul(x, y) ( (FLAC__fixedpoint) ( ((FLAC__int64)(x)*(FLAC__int64)(y)) >> 16 ) )
+
+#define FLAC__fixedpoint_div(x, y) ( (FLAC__fixedpoint) ( ( ((FLAC__int64)(x)<<32) / (FLAC__int64)(y) ) >> 16 ) )
+
+/*
+ *	FLAC__fixedpoint_log2()
+ *	--------------------------------------------------------------------
+ *	Returns the base-2 logarithm of the fixed-point number 'x' using an
+ *	algorithm by Knuth for x >= 1.0
+ *
+ *	'fracbits' is the number of fractional bits of 'x'.  'fracbits' must
+ *	be < 32 and evenly divisible by 4 (0 is OK but not very precise).
+ *
+ *	'precision' roughly limits the number of iterations that are done;
+ *	use (unsigned)(-1) for maximum precision.
+ *
+ *	If 'x' is less than one -- that is, x < (1<<fracbits) -- then this
+ *	function will punt and return 0.
+ *
+ *	The return value will also have 'fracbits' fractional bits.
+ */
+FLAC__uint32 FLAC__fixedpoint_log2(FLAC__uint32 x, unsigned fracbits, unsigned precision);
+
+#endif
+
+#endif