The "GR-PEACH_Audio_Playback_Sample" is a sample code that can provides high-resolution audio playback of FLAC format files. It also allows the user to audio-playback control functions such as play, pause, and stop by manipulating key switches.

Dependencies:   R_BSP TLV320_RBSP USBHost_custom

Note

For a sample program of with LCD Board,
please refer to GR-PEACH_Audio_Playback_7InchLCD_Sample.

Introduction

The "GR-PEACH_Audio_Playback_Sample" is a sample code that can provides high-resolution audio playback of FLAC format files. It also allows the user to audio-playback control functions such as play, pause, and stop by manipulating key switches.

1. Overview of the Sample Code

1.1 Software Block Diagram

Figure 1.1 shows the software block diagram.

/media/uploads/dkato/audioplayback_figure1_1x.png

1.2 Pin Definitions

Table 1.1 shows the pins that this sample code are to use.

/media/uploads/dkato/audioplayback_table1_1.png

2. Sample Code Operating Environment

This sample code runs in GR-PEACH + the Audio/Camera shield for the GR-PEACH environment. This section explains the functions of the ports that are used by this sample code.

2.1 Operating Environment

Figure 2.1 shows the configuration of the operating environment for running this sample code.

/media/uploads/dkato/audioplayback_figure2_1.png /media/uploads/1050186/figure2_2.png /media/uploads/dkato/audioplayback_figure2_3.png

2.2 List of User Operations

A list of user operations on the command line, TFT touch keys, and switch key that the user can perform for this sample code is shown in. Table 2.1.

/media/uploads/dkato/audioplayback_table2_1x.png

3. Function Outline

The functions of this sample code are summarized in Table 3.1 to Table 3.3.

/media/uploads/dkato/audioplayback_table3_1.png /media/uploads/dkato/audioplayback_table3_2.png /media/uploads/dkato/audioplayback_table3_3.png /media/uploads/dkato/audioplayback_figure3_1.png

3.1 Playback Control

The playback control that the sample code supports include play, pause, stop, skip to next, and skip to previous.

3.2 Trick Play Control

Manipulating "Repeat" alternates between "Repeat mode On" and "Repeat mode Off". The default mode is "Repeat mode On". When the repeat mode is on, the playback of the first song starts after the playback of the last song is finished. When the repeat mode is off, the sample code enters the stopped state after the playback of the last song is finished.

3.3 Acquisition of the Song Information

The information of the song being played is obtained by operating the "Play info" during the playback of the song. Table 3.4 lists the items of information that can be obtained by the "Play info" operation.

/media/uploads/dkato/audioplayback_table3_4.png

3.4 How the Folder Structure is Analyzed

The sample coded analyzes the folder structure in the breadth-first search order. The order in which files are numbered is illustrated in Table 3.5. The sample code does not sort the files by file or folder name.

/media/uploads/dkato/audioplayback_table3_5.png

4.Others

The default setting of serial communication (baud rate etc.) in mbed is shown the following link.
Please refer to the link and change the settings of your PC terminal software.
The default value of baud rate in mbed is 9600, and this application uses baud rate 9600.
https://developer.mbed.org/teams/Renesas/wiki/GR-PEACH-Getting-Started#install-the-usb-serial-communication

Revision:
0:ee40da884cfc
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/flac/src/libFLAC/include/private/fixed.h	Fri Oct 16 04:28:07 2015 +0000
@@ -0,0 +1,107 @@
+/* libFLAC - Free Lossless Audio Codec library
+ * Copyright (C) 2000-2009  Josh Coalson
+ * Copyright (C) 2011-2014  Xiph.Org Foundation
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * - Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ *
+ * - Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ *
+ * - Neither the name of the Xiph.org Foundation nor the names of its
+ * contributors may be used to endorse or promote products derived from
+ * this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
+ * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
+ * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
+ * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
+ * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
+ * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
+ * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
+ * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#ifndef FLAC__PRIVATE__FIXED_H
+#define FLAC__PRIVATE__FIXED_H
+
+#ifdef HAVE_CONFIG_H
+#include <config.h>
+#endif
+
+#include "private/cpu.h"
+#include "private/float.h"
+#include "FLAC/format.h"
+
+/*
+ *	FLAC__fixed_compute_best_predictor()
+ *	--------------------------------------------------------------------
+ *	Compute the best fixed predictor and the expected bits-per-sample
+ *  of the residual signal for each order.  The _wide() version uses
+ *  64-bit integers which is statistically necessary when bits-per-
+ *  sample + log2(blocksize) > 30
+ *
+ *	IN data[0,data_len-1]
+ *	IN data_len
+ *	OUT residual_bits_per_sample[0,FLAC__MAX_FIXED_ORDER]
+ */
+#ifndef FLAC__INTEGER_ONLY_LIBRARY
+unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]);
+unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]);
+# ifndef FLAC__NO_ASM
+#  if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && defined FLAC__HAS_X86INTRIN
+#   ifdef FLAC__SSE2_SUPPORTED
+unsigned FLAC__fixed_compute_best_predictor_intrin_sse2(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1]);
+unsigned FLAC__fixed_compute_best_predictor_wide_intrin_sse2(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1]);
+#   endif
+#   ifdef FLAC__SSSE3_SUPPORTED
+unsigned FLAC__fixed_compute_best_predictor_intrin_ssse3(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]);
+unsigned FLAC__fixed_compute_best_predictor_wide_intrin_ssse3(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1]);
+#   endif
+#  endif
+#  if defined FLAC__CPU_IA32 && defined FLAC__HAS_NASM
+unsigned FLAC__fixed_compute_best_predictor_asm_ia32_mmx_cmov(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]);
+#  endif
+# endif
+#else
+unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], unsigned data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]);
+unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], unsigned data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]);
+#endif
+
+/*
+ *	FLAC__fixed_compute_residual()
+ *	--------------------------------------------------------------------
+ *	Compute the residual signal obtained from sutracting the predicted
+ *	signal from the original.
+ *
+ *	IN data[-order,data_len-1]        original signal (NOTE THE INDICES!)
+ *	IN data_len                       length of original signal
+ *	IN order <= FLAC__MAX_FIXED_ORDER fixed-predictor order
+ *	OUT residual[0,data_len-1]        residual signal
+ */
+void FLAC__fixed_compute_residual(const FLAC__int32 data[], unsigned data_len, unsigned order, FLAC__int32 residual[]);
+
+/*
+ *	FLAC__fixed_restore_signal()
+ *	--------------------------------------------------------------------
+ *	Restore the original signal by summing the residual and the
+ *	predictor.
+ *
+ *	IN residual[0,data_len-1]         residual signal
+ *	IN data_len                       length of original signal
+ *	IN order <= FLAC__MAX_FIXED_ORDER fixed-predictor order
+ *	*** IMPORTANT: the caller must pass in the historical samples:
+ *	IN  data[-order,-1]               previously-reconstructed historical samples
+ *	OUT data[0,data_len-1]            original signal
+ */
+void FLAC__fixed_restore_signal(const FLAC__int32 residual[], unsigned data_len, unsigned order, FLAC__int32 data[]);
+
+#endif