The "GR-PEACH_Audio_Playback_Sample" is a sample code that can provides high-resolution audio playback of FLAC format files. It also allows the user to audio-playback control functions such as play, pause, and stop by manipulating key switches.

Dependencies:   R_BSP TLV320_RBSP USBHost_custom

Note

For a sample program of with LCD Board,
please refer to GR-PEACH_Audio_Playback_7InchLCD_Sample.

Introduction

The "GR-PEACH_Audio_Playback_Sample" is a sample code that can provides high-resolution audio playback of FLAC format files. It also allows the user to audio-playback control functions such as play, pause, and stop by manipulating key switches.

1. Overview of the Sample Code

1.1 Software Block Diagram

Figure 1.1 shows the software block diagram.

/media/uploads/dkato/audioplayback_figure1_1x.png

1.2 Pin Definitions

Table 1.1 shows the pins that this sample code are to use.

/media/uploads/dkato/audioplayback_table1_1.png

2. Sample Code Operating Environment

This sample code runs in GR-PEACH + the Audio/Camera shield for the GR-PEACH environment. This section explains the functions of the ports that are used by this sample code.

2.1 Operating Environment

Figure 2.1 shows the configuration of the operating environment for running this sample code.

/media/uploads/dkato/audioplayback_figure2_1.png /media/uploads/1050186/figure2_2.png /media/uploads/dkato/audioplayback_figure2_3.png

2.2 List of User Operations

A list of user operations on the command line, TFT touch keys, and switch key that the user can perform for this sample code is shown in. Table 2.1.

/media/uploads/dkato/audioplayback_table2_1x.png

3. Function Outline

The functions of this sample code are summarized in Table 3.1 to Table 3.3.

/media/uploads/dkato/audioplayback_table3_1.png /media/uploads/dkato/audioplayback_table3_2.png /media/uploads/dkato/audioplayback_table3_3.png /media/uploads/dkato/audioplayback_figure3_1.png

3.1 Playback Control

The playback control that the sample code supports include play, pause, stop, skip to next, and skip to previous.

3.2 Trick Play Control

Manipulating "Repeat" alternates between "Repeat mode On" and "Repeat mode Off". The default mode is "Repeat mode On". When the repeat mode is on, the playback of the first song starts after the playback of the last song is finished. When the repeat mode is off, the sample code enters the stopped state after the playback of the last song is finished.

3.3 Acquisition of the Song Information

The information of the song being played is obtained by operating the "Play info" during the playback of the song. Table 3.4 lists the items of information that can be obtained by the "Play info" operation.

/media/uploads/dkato/audioplayback_table3_4.png

3.4 How the Folder Structure is Analyzed

The sample coded analyzes the folder structure in the breadth-first search order. The order in which files are numbered is illustrated in Table 3.5. The sample code does not sort the files by file or folder name.

/media/uploads/dkato/audioplayback_table3_5.png

4.Others

The default setting of serial communication (baud rate etc.) in mbed is shown the following link.
Please refer to the link and change the settings of your PC terminal software.
The default value of baud rate in mbed is 9600, and this application uses baud rate 9600.
https://developer.mbed.org/teams/Renesas/wiki/GR-PEACH-Getting-Started#install-the-usb-serial-communication

Committer:
dkato
Date:
Fri Oct 16 04:28:07 2015 +0000
Revision:
0:ee40da884cfc
first commit

Who changed what in which revision?

UserRevisionLine numberNew contents of line
dkato 0:ee40da884cfc 1 /* libFLAC - Free Lossless Audio Codec library
dkato 0:ee40da884cfc 2 * Copyright (C) 2000-2009 Josh Coalson
dkato 0:ee40da884cfc 3 * Copyright (C) 2011-2014 Xiph.Org Foundation
dkato 0:ee40da884cfc 4 *
dkato 0:ee40da884cfc 5 * Redistribution and use in source and binary forms, with or without
dkato 0:ee40da884cfc 6 * modification, are permitted provided that the following conditions
dkato 0:ee40da884cfc 7 * are met:
dkato 0:ee40da884cfc 8 *
dkato 0:ee40da884cfc 9 * - Redistributions of source code must retain the above copyright
dkato 0:ee40da884cfc 10 * notice, this list of conditions and the following disclaimer.
dkato 0:ee40da884cfc 11 *
dkato 0:ee40da884cfc 12 * - Redistributions in binary form must reproduce the above copyright
dkato 0:ee40da884cfc 13 * notice, this list of conditions and the following disclaimer in the
dkato 0:ee40da884cfc 14 * documentation and/or other materials provided with the distribution.
dkato 0:ee40da884cfc 15 *
dkato 0:ee40da884cfc 16 * - Neither the name of the Xiph.org Foundation nor the names of its
dkato 0:ee40da884cfc 17 * contributors may be used to endorse or promote products derived from
dkato 0:ee40da884cfc 18 * this software without specific prior written permission.
dkato 0:ee40da884cfc 19 *
dkato 0:ee40da884cfc 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
dkato 0:ee40da884cfc 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
dkato 0:ee40da884cfc 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
dkato 0:ee40da884cfc 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
dkato 0:ee40da884cfc 24 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
dkato 0:ee40da884cfc 25 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
dkato 0:ee40da884cfc 26 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
dkato 0:ee40da884cfc 27 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
dkato 0:ee40da884cfc 28 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
dkato 0:ee40da884cfc 29 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
dkato 0:ee40da884cfc 30 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
dkato 0:ee40da884cfc 31 */
dkato 0:ee40da884cfc 32
dkato 0:ee40da884cfc 33 #ifndef FLAC__PRIVATE__LPC_H
dkato 0:ee40da884cfc 34 #define FLAC__PRIVATE__LPC_H
dkato 0:ee40da884cfc 35
dkato 0:ee40da884cfc 36 #ifdef HAVE_CONFIG_H
dkato 0:ee40da884cfc 37 #include <config.h>
dkato 0:ee40da884cfc 38 #endif
dkato 0:ee40da884cfc 39
dkato 0:ee40da884cfc 40 #include "private/cpu.h"
dkato 0:ee40da884cfc 41 #include "private/float.h"
dkato 0:ee40da884cfc 42 #include "FLAC/format.h"
dkato 0:ee40da884cfc 43
dkato 0:ee40da884cfc 44 #ifndef FLAC__INTEGER_ONLY_LIBRARY
dkato 0:ee40da884cfc 45
dkato 0:ee40da884cfc 46 /*
dkato 0:ee40da884cfc 47 * FLAC__lpc_window_data()
dkato 0:ee40da884cfc 48 * --------------------------------------------------------------------
dkato 0:ee40da884cfc 49 * Applies the given window to the data.
dkato 0:ee40da884cfc 50 * OPT: asm implementation
dkato 0:ee40da884cfc 51 *
dkato 0:ee40da884cfc 52 * IN in[0,data_len-1]
dkato 0:ee40da884cfc 53 * IN window[0,data_len-1]
dkato 0:ee40da884cfc 54 * OUT out[0,lag-1]
dkato 0:ee40da884cfc 55 * IN data_len
dkato 0:ee40da884cfc 56 */
dkato 0:ee40da884cfc 57 void FLAC__lpc_window_data(const FLAC__int32 in[], const FLAC__real window[], FLAC__real out[], unsigned data_len);
dkato 0:ee40da884cfc 58
dkato 0:ee40da884cfc 59 /*
dkato 0:ee40da884cfc 60 * FLAC__lpc_compute_autocorrelation()
dkato 0:ee40da884cfc 61 * --------------------------------------------------------------------
dkato 0:ee40da884cfc 62 * Compute the autocorrelation for lags between 0 and lag-1.
dkato 0:ee40da884cfc 63 * Assumes data[] outside of [0,data_len-1] == 0.
dkato 0:ee40da884cfc 64 * Asserts that lag > 0.
dkato 0:ee40da884cfc 65 *
dkato 0:ee40da884cfc 66 * IN data[0,data_len-1]
dkato 0:ee40da884cfc 67 * IN data_len
dkato 0:ee40da884cfc 68 * IN 0 < lag <= data_len
dkato 0:ee40da884cfc 69 * OUT autoc[0,lag-1]
dkato 0:ee40da884cfc 70 */
dkato 0:ee40da884cfc 71 void FLAC__lpc_compute_autocorrelation(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]);
dkato 0:ee40da884cfc 72 #ifndef FLAC__NO_ASM
dkato 0:ee40da884cfc 73 # ifdef FLAC__CPU_IA32
dkato 0:ee40da884cfc 74 # ifdef FLAC__HAS_NASM
dkato 0:ee40da884cfc 75 void FLAC__lpc_compute_autocorrelation_asm_ia32(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]);
dkato 0:ee40da884cfc 76 void FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_4(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]);
dkato 0:ee40da884cfc 77 void FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_8(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]);
dkato 0:ee40da884cfc 78 void FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_12(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]);
dkato 0:ee40da884cfc 79 void FLAC__lpc_compute_autocorrelation_asm_ia32_sse_lag_16(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]);
dkato 0:ee40da884cfc 80 # endif
dkato 0:ee40da884cfc 81 # endif
dkato 0:ee40da884cfc 82 # if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && defined FLAC__HAS_X86INTRIN
dkato 0:ee40da884cfc 83 # ifdef FLAC__SSE_SUPPORTED
dkato 0:ee40da884cfc 84 void FLAC__lpc_compute_autocorrelation_intrin_sse_lag_4(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]);
dkato 0:ee40da884cfc 85 void FLAC__lpc_compute_autocorrelation_intrin_sse_lag_8(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]);
dkato 0:ee40da884cfc 86 void FLAC__lpc_compute_autocorrelation_intrin_sse_lag_12(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]);
dkato 0:ee40da884cfc 87 void FLAC__lpc_compute_autocorrelation_intrin_sse_lag_16(const FLAC__real data[], unsigned data_len, unsigned lag, FLAC__real autoc[]);
dkato 0:ee40da884cfc 88 # endif
dkato 0:ee40da884cfc 89 # endif
dkato 0:ee40da884cfc 90 #endif
dkato 0:ee40da884cfc 91
dkato 0:ee40da884cfc 92 /*
dkato 0:ee40da884cfc 93 * FLAC__lpc_compute_lp_coefficients()
dkato 0:ee40da884cfc 94 * --------------------------------------------------------------------
dkato 0:ee40da884cfc 95 * Computes LP coefficients for orders 1..max_order.
dkato 0:ee40da884cfc 96 * Do not call if autoc[0] == 0.0. This means the signal is zero
dkato 0:ee40da884cfc 97 * and there is no point in calculating a predictor.
dkato 0:ee40da884cfc 98 *
dkato 0:ee40da884cfc 99 * IN autoc[0,max_order] autocorrelation values
dkato 0:ee40da884cfc 100 * IN 0 < max_order <= FLAC__MAX_LPC_ORDER max LP order to compute
dkato 0:ee40da884cfc 101 * OUT lp_coeff[0,max_order-1][0,max_order-1] LP coefficients for each order
dkato 0:ee40da884cfc 102 * *** IMPORTANT:
dkato 0:ee40da884cfc 103 * *** lp_coeff[0,max_order-1][max_order,FLAC__MAX_LPC_ORDER-1] are untouched
dkato 0:ee40da884cfc 104 * OUT error[0,max_order-1] error for each order (more
dkato 0:ee40da884cfc 105 * specifically, the variance of
dkato 0:ee40da884cfc 106 * the error signal times # of
dkato 0:ee40da884cfc 107 * samples in the signal)
dkato 0:ee40da884cfc 108 *
dkato 0:ee40da884cfc 109 * Example: if max_order is 9, the LP coefficients for order 9 will be
dkato 0:ee40da884cfc 110 * in lp_coeff[8][0,8], the LP coefficients for order 8 will be
dkato 0:ee40da884cfc 111 * in lp_coeff[7][0,7], etc.
dkato 0:ee40da884cfc 112 */
dkato 0:ee40da884cfc 113 void FLAC__lpc_compute_lp_coefficients(const FLAC__real autoc[], unsigned *max_order, FLAC__real lp_coeff[][FLAC__MAX_LPC_ORDER], FLAC__double error[]);
dkato 0:ee40da884cfc 114
dkato 0:ee40da884cfc 115 /*
dkato 0:ee40da884cfc 116 * FLAC__lpc_quantize_coefficients()
dkato 0:ee40da884cfc 117 * --------------------------------------------------------------------
dkato 0:ee40da884cfc 118 * Quantizes the LP coefficients. NOTE: precision + bits_per_sample
dkato 0:ee40da884cfc 119 * must be less than 32 (sizeof(FLAC__int32)*8).
dkato 0:ee40da884cfc 120 *
dkato 0:ee40da884cfc 121 * IN lp_coeff[0,order-1] LP coefficients
dkato 0:ee40da884cfc 122 * IN order LP order
dkato 0:ee40da884cfc 123 * IN FLAC__MIN_QLP_COEFF_PRECISION < precision
dkato 0:ee40da884cfc 124 * desired precision (in bits, including sign
dkato 0:ee40da884cfc 125 * bit) of largest coefficient
dkato 0:ee40da884cfc 126 * OUT qlp_coeff[0,order-1] quantized coefficients
dkato 0:ee40da884cfc 127 * OUT shift # of bits to shift right to get approximated
dkato 0:ee40da884cfc 128 * LP coefficients. NOTE: could be negative.
dkato 0:ee40da884cfc 129 * RETURN 0 => quantization OK
dkato 0:ee40da884cfc 130 * 1 => coefficients require too much shifting for *shift to
dkato 0:ee40da884cfc 131 * fit in the LPC subframe header. 'shift' is unset.
dkato 0:ee40da884cfc 132 * 2 => coefficients are all zero, which is bad. 'shift' is
dkato 0:ee40da884cfc 133 * unset.
dkato 0:ee40da884cfc 134 */
dkato 0:ee40da884cfc 135 int FLAC__lpc_quantize_coefficients(const FLAC__real lp_coeff[], unsigned order, unsigned precision, FLAC__int32 qlp_coeff[], int *shift);
dkato 0:ee40da884cfc 136
dkato 0:ee40da884cfc 137 /*
dkato 0:ee40da884cfc 138 * FLAC__lpc_compute_residual_from_qlp_coefficients()
dkato 0:ee40da884cfc 139 * --------------------------------------------------------------------
dkato 0:ee40da884cfc 140 * Compute the residual signal obtained from sutracting the predicted
dkato 0:ee40da884cfc 141 * signal from the original.
dkato 0:ee40da884cfc 142 *
dkato 0:ee40da884cfc 143 * IN data[-order,data_len-1] original signal (NOTE THE INDICES!)
dkato 0:ee40da884cfc 144 * IN data_len length of original signal
dkato 0:ee40da884cfc 145 * IN qlp_coeff[0,order-1] quantized LP coefficients
dkato 0:ee40da884cfc 146 * IN order > 0 LP order
dkato 0:ee40da884cfc 147 * IN lp_quantization quantization of LP coefficients in bits
dkato 0:ee40da884cfc 148 * OUT residual[0,data_len-1] residual signal
dkato 0:ee40da884cfc 149 */
dkato 0:ee40da884cfc 150 void FLAC__lpc_compute_residual_from_qlp_coefficients(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]);
dkato 0:ee40da884cfc 151 void FLAC__lpc_compute_residual_from_qlp_coefficients_wide(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]);
dkato 0:ee40da884cfc 152 #ifndef FLAC__NO_ASM
dkato 0:ee40da884cfc 153 # ifdef FLAC__CPU_IA32
dkato 0:ee40da884cfc 154 # ifdef FLAC__HAS_NASM
dkato 0:ee40da884cfc 155 void FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]);
dkato 0:ee40da884cfc 156 void FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32_mmx(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]);
dkato 0:ee40da884cfc 157 void FLAC__lpc_compute_residual_from_qlp_coefficients_wide_asm_ia32(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]);
dkato 0:ee40da884cfc 158 # endif
dkato 0:ee40da884cfc 159 # endif
dkato 0:ee40da884cfc 160 # if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && defined FLAC__HAS_X86INTRIN
dkato 0:ee40da884cfc 161 # ifdef FLAC__SSE2_SUPPORTED
dkato 0:ee40da884cfc 162 void FLAC__lpc_compute_residual_from_qlp_coefficients_16_intrin_sse2(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]);
dkato 0:ee40da884cfc 163 void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_sse2(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]);
dkato 0:ee40da884cfc 164 # endif
dkato 0:ee40da884cfc 165 # ifdef FLAC__SSE4_1_SUPPORTED
dkato 0:ee40da884cfc 166 void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_sse41(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]);
dkato 0:ee40da884cfc 167 void FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_sse41(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]);
dkato 0:ee40da884cfc 168 # endif
dkato 0:ee40da884cfc 169 # ifdef FLAC__AVX2_SUPPORTED
dkato 0:ee40da884cfc 170 void FLAC__lpc_compute_residual_from_qlp_coefficients_16_intrin_avx2(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]);
dkato 0:ee40da884cfc 171 void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_avx2(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]);
dkato 0:ee40da884cfc 172 void FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_avx2(const FLAC__int32 *data, unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 residual[]);
dkato 0:ee40da884cfc 173 # endif
dkato 0:ee40da884cfc 174 # endif
dkato 0:ee40da884cfc 175 #endif
dkato 0:ee40da884cfc 176
dkato 0:ee40da884cfc 177 #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */
dkato 0:ee40da884cfc 178
dkato 0:ee40da884cfc 179 /*
dkato 0:ee40da884cfc 180 * FLAC__lpc_restore_signal()
dkato 0:ee40da884cfc 181 * --------------------------------------------------------------------
dkato 0:ee40da884cfc 182 * Restore the original signal by summing the residual and the
dkato 0:ee40da884cfc 183 * predictor.
dkato 0:ee40da884cfc 184 *
dkato 0:ee40da884cfc 185 * IN residual[0,data_len-1] residual signal
dkato 0:ee40da884cfc 186 * IN data_len length of original signal
dkato 0:ee40da884cfc 187 * IN qlp_coeff[0,order-1] quantized LP coefficients
dkato 0:ee40da884cfc 188 * IN order > 0 LP order
dkato 0:ee40da884cfc 189 * IN lp_quantization quantization of LP coefficients in bits
dkato 0:ee40da884cfc 190 * *** IMPORTANT: the caller must pass in the historical samples:
dkato 0:ee40da884cfc 191 * IN data[-order,-1] previously-reconstructed historical samples
dkato 0:ee40da884cfc 192 * OUT data[0,data_len-1] original signal
dkato 0:ee40da884cfc 193 */
dkato 0:ee40da884cfc 194 void FLAC__lpc_restore_signal(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]);
dkato 0:ee40da884cfc 195 void FLAC__lpc_restore_signal_wide(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]);
dkato 0:ee40da884cfc 196 #ifndef FLAC__NO_ASM
dkato 0:ee40da884cfc 197 # ifdef FLAC__CPU_IA32
dkato 0:ee40da884cfc 198 # ifdef FLAC__HAS_NASM
dkato 0:ee40da884cfc 199 void FLAC__lpc_restore_signal_asm_ia32(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]);
dkato 0:ee40da884cfc 200 void FLAC__lpc_restore_signal_asm_ia32_mmx(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]);
dkato 0:ee40da884cfc 201 void FLAC__lpc_restore_signal_wide_asm_ia32(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]);
dkato 0:ee40da884cfc 202 # endif /* FLAC__HAS_NASM */
dkato 0:ee40da884cfc 203 # endif /* FLAC__CPU_IA32 */
dkato 0:ee40da884cfc 204 # if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && defined FLAC__HAS_X86INTRIN
dkato 0:ee40da884cfc 205 # ifdef FLAC__SSE2_SUPPORTED
dkato 0:ee40da884cfc 206 void FLAC__lpc_restore_signal_16_intrin_sse2(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]);
dkato 0:ee40da884cfc 207 # endif
dkato 0:ee40da884cfc 208 # ifdef FLAC__SSE4_1_SUPPORTED
dkato 0:ee40da884cfc 209 void FLAC__lpc_restore_signal_wide_intrin_sse41(const FLAC__int32 residual[], unsigned data_len, const FLAC__int32 qlp_coeff[], unsigned order, int lp_quantization, FLAC__int32 data[]);
dkato 0:ee40da884cfc 210 # endif
dkato 0:ee40da884cfc 211 # endif
dkato 0:ee40da884cfc 212 #endif /* FLAC__NO_ASM */
dkato 0:ee40da884cfc 213
dkato 0:ee40da884cfc 214 #ifndef FLAC__INTEGER_ONLY_LIBRARY
dkato 0:ee40da884cfc 215
dkato 0:ee40da884cfc 216 /*
dkato 0:ee40da884cfc 217 * FLAC__lpc_compute_expected_bits_per_residual_sample()
dkato 0:ee40da884cfc 218 * --------------------------------------------------------------------
dkato 0:ee40da884cfc 219 * Compute the expected number of bits per residual signal sample
dkato 0:ee40da884cfc 220 * based on the LP error (which is related to the residual variance).
dkato 0:ee40da884cfc 221 *
dkato 0:ee40da884cfc 222 * IN lpc_error >= 0.0 error returned from calculating LP coefficients
dkato 0:ee40da884cfc 223 * IN total_samples > 0 # of samples in residual signal
dkato 0:ee40da884cfc 224 * RETURN expected bits per sample
dkato 0:ee40da884cfc 225 */
dkato 0:ee40da884cfc 226 FLAC__double FLAC__lpc_compute_expected_bits_per_residual_sample(FLAC__double lpc_error, unsigned total_samples);
dkato 0:ee40da884cfc 227 FLAC__double FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(FLAC__double lpc_error, FLAC__double error_scale);
dkato 0:ee40da884cfc 228
dkato 0:ee40da884cfc 229 /*
dkato 0:ee40da884cfc 230 * FLAC__lpc_compute_best_order()
dkato 0:ee40da884cfc 231 * --------------------------------------------------------------------
dkato 0:ee40da884cfc 232 * Compute the best order from the array of signal errors returned
dkato 0:ee40da884cfc 233 * during coefficient computation.
dkato 0:ee40da884cfc 234 *
dkato 0:ee40da884cfc 235 * IN lpc_error[0,max_order-1] >= 0.0 error returned from calculating LP coefficients
dkato 0:ee40da884cfc 236 * IN max_order > 0 max LP order
dkato 0:ee40da884cfc 237 * IN total_samples > 0 # of samples in residual signal
dkato 0:ee40da884cfc 238 * IN overhead_bits_per_order # of bits overhead for each increased LP order
dkato 0:ee40da884cfc 239 * (includes warmup sample size and quantized LP coefficient)
dkato 0:ee40da884cfc 240 * RETURN [1,max_order] best order
dkato 0:ee40da884cfc 241 */
dkato 0:ee40da884cfc 242 unsigned FLAC__lpc_compute_best_order(const FLAC__double lpc_error[], unsigned max_order, unsigned total_samples, unsigned overhead_bits_per_order);
dkato 0:ee40da884cfc 243
dkato 0:ee40da884cfc 244 #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */
dkato 0:ee40da884cfc 245
dkato 0:ee40da884cfc 246 #endif