The "GR-PEACH_Audio_Playback_Sample" is a sample code that can provides high-resolution audio playback of FLAC format files. It also allows the user to audio-playback control functions such as play, pause, and stop by manipulating key switches.

Dependencies:   R_BSP TLV320_RBSP USBHost_custom

Note

For a sample program of with LCD Board,
please refer to GR-PEACH_Audio_Playback_7InchLCD_Sample.

Introduction

The "GR-PEACH_Audio_Playback_Sample" is a sample code that can provides high-resolution audio playback of FLAC format files. It also allows the user to audio-playback control functions such as play, pause, and stop by manipulating key switches.

1. Overview of the Sample Code

1.1 Software Block Diagram

Figure 1.1 shows the software block diagram.

/media/uploads/dkato/audioplayback_figure1_1x.png

1.2 Pin Definitions

Table 1.1 shows the pins that this sample code are to use.

/media/uploads/dkato/audioplayback_table1_1.png

2. Sample Code Operating Environment

This sample code runs in GR-PEACH + the Audio/Camera shield for the GR-PEACH environment. This section explains the functions of the ports that are used by this sample code.

2.1 Operating Environment

Figure 2.1 shows the configuration of the operating environment for running this sample code.

/media/uploads/dkato/audioplayback_figure2_1.png /media/uploads/1050186/figure2_2.png /media/uploads/dkato/audioplayback_figure2_3.png

2.2 List of User Operations

A list of user operations on the command line, TFT touch keys, and switch key that the user can perform for this sample code is shown in. Table 2.1.

/media/uploads/dkato/audioplayback_table2_1x.png

3. Function Outline

The functions of this sample code are summarized in Table 3.1 to Table 3.3.

/media/uploads/dkato/audioplayback_table3_1.png /media/uploads/dkato/audioplayback_table3_2.png /media/uploads/dkato/audioplayback_table3_3.png /media/uploads/dkato/audioplayback_figure3_1.png

3.1 Playback Control

The playback control that the sample code supports include play, pause, stop, skip to next, and skip to previous.

3.2 Trick Play Control

Manipulating "Repeat" alternates between "Repeat mode On" and "Repeat mode Off". The default mode is "Repeat mode On". When the repeat mode is on, the playback of the first song starts after the playback of the last song is finished. When the repeat mode is off, the sample code enters the stopped state after the playback of the last song is finished.

3.3 Acquisition of the Song Information

The information of the song being played is obtained by operating the "Play info" during the playback of the song. Table 3.4 lists the items of information that can be obtained by the "Play info" operation.

/media/uploads/dkato/audioplayback_table3_4.png

3.4 How the Folder Structure is Analyzed

The sample coded analyzes the folder structure in the breadth-first search order. The order in which files are numbered is illustrated in Table 3.5. The sample code does not sort the files by file or folder name.

/media/uploads/dkato/audioplayback_table3_5.png

4.Others

The default setting of serial communication (baud rate etc.) in mbed is shown the following link.
Please refer to the link and change the settings of your PC terminal software.
The default value of baud rate in mbed is 9600, and this application uses baud rate 9600.
https://developer.mbed.org/teams/Renesas/wiki/GR-PEACH-Getting-Started#install-the-usb-serial-communication

Committer:
dkato
Date:
Fri Oct 16 04:28:07 2015 +0000
Revision:
0:ee40da884cfc
first commit

Who changed what in which revision?

UserRevisionLine numberNew contents of line
dkato 0:ee40da884cfc 1 /* libFLAC - Free Lossless Audio Codec library
dkato 0:ee40da884cfc 2 * Copyright (C) 2000-2009 Josh Coalson
dkato 0:ee40da884cfc 3 * Copyright (C) 2011-2014 Xiph.Org Foundation
dkato 0:ee40da884cfc 4 *
dkato 0:ee40da884cfc 5 * Redistribution and use in source and binary forms, with or without
dkato 0:ee40da884cfc 6 * modification, are permitted provided that the following conditions
dkato 0:ee40da884cfc 7 * are met:
dkato 0:ee40da884cfc 8 *
dkato 0:ee40da884cfc 9 * - Redistributions of source code must retain the above copyright
dkato 0:ee40da884cfc 10 * notice, this list of conditions and the following disclaimer.
dkato 0:ee40da884cfc 11 *
dkato 0:ee40da884cfc 12 * - Redistributions in binary form must reproduce the above copyright
dkato 0:ee40da884cfc 13 * notice, this list of conditions and the following disclaimer in the
dkato 0:ee40da884cfc 14 * documentation and/or other materials provided with the distribution.
dkato 0:ee40da884cfc 15 *
dkato 0:ee40da884cfc 16 * - Neither the name of the Xiph.org Foundation nor the names of its
dkato 0:ee40da884cfc 17 * contributors may be used to endorse or promote products derived from
dkato 0:ee40da884cfc 18 * this software without specific prior written permission.
dkato 0:ee40da884cfc 19 *
dkato 0:ee40da884cfc 20 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
dkato 0:ee40da884cfc 21 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
dkato 0:ee40da884cfc 22 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
dkato 0:ee40da884cfc 23 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR
dkato 0:ee40da884cfc 24 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
dkato 0:ee40da884cfc 25 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
dkato 0:ee40da884cfc 26 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
dkato 0:ee40da884cfc 27 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
dkato 0:ee40da884cfc 28 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
dkato 0:ee40da884cfc 29 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
dkato 0:ee40da884cfc 30 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
dkato 0:ee40da884cfc 31 */
dkato 0:ee40da884cfc 32
dkato 0:ee40da884cfc 33 #ifndef FLAC__PRIVATE__FIXED_H
dkato 0:ee40da884cfc 34 #define FLAC__PRIVATE__FIXED_H
dkato 0:ee40da884cfc 35
dkato 0:ee40da884cfc 36 #ifdef HAVE_CONFIG_H
dkato 0:ee40da884cfc 37 #include <config.h>
dkato 0:ee40da884cfc 38 #endif
dkato 0:ee40da884cfc 39
dkato 0:ee40da884cfc 40 #include "private/cpu.h"
dkato 0:ee40da884cfc 41 #include "private/float.h"
dkato 0:ee40da884cfc 42 #include "FLAC/format.h"
dkato 0:ee40da884cfc 43
dkato 0:ee40da884cfc 44 /*
dkato 0:ee40da884cfc 45 * FLAC__fixed_compute_best_predictor()
dkato 0:ee40da884cfc 46 * --------------------------------------------------------------------
dkato 0:ee40da884cfc 47 * Compute the best fixed predictor and the expected bits-per-sample
dkato 0:ee40da884cfc 48 * of the residual signal for each order. The _wide() version uses
dkato 0:ee40da884cfc 49 * 64-bit integers which is statistically necessary when bits-per-
dkato 0:ee40da884cfc 50 * sample + log2(blocksize) > 30
dkato 0:ee40da884cfc 51 *
dkato 0:ee40da884cfc 52 * IN data[0,data_len-1]
dkato 0:ee40da884cfc 53 * IN data_len
dkato 0:ee40da884cfc 54 * OUT residual_bits_per_sample[0,FLAC__MAX_FIXED_ORDER]
dkato 0:ee40da884cfc 55 */
dkato 0:ee40da884cfc 56 #ifndef FLAC__INTEGER_ONLY_LIBRARY
dkato 0:ee40da884cfc 57 unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]);
dkato 0:ee40da884cfc 58 unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]);
dkato 0:ee40da884cfc 59 # ifndef FLAC__NO_ASM
dkato 0:ee40da884cfc 60 # if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && defined FLAC__HAS_X86INTRIN
dkato 0:ee40da884cfc 61 # ifdef FLAC__SSE2_SUPPORTED
dkato 0:ee40da884cfc 62 unsigned FLAC__fixed_compute_best_predictor_intrin_sse2(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1]);
dkato 0:ee40da884cfc 63 unsigned FLAC__fixed_compute_best_predictor_wide_intrin_sse2(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1]);
dkato 0:ee40da884cfc 64 # endif
dkato 0:ee40da884cfc 65 # ifdef FLAC__SSSE3_SUPPORTED
dkato 0:ee40da884cfc 66 unsigned FLAC__fixed_compute_best_predictor_intrin_ssse3(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]);
dkato 0:ee40da884cfc 67 unsigned FLAC__fixed_compute_best_predictor_wide_intrin_ssse3(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER + 1]);
dkato 0:ee40da884cfc 68 # endif
dkato 0:ee40da884cfc 69 # endif
dkato 0:ee40da884cfc 70 # if defined FLAC__CPU_IA32 && defined FLAC__HAS_NASM
dkato 0:ee40da884cfc 71 unsigned FLAC__fixed_compute_best_predictor_asm_ia32_mmx_cmov(const FLAC__int32 data[], unsigned data_len, FLAC__float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]);
dkato 0:ee40da884cfc 72 # endif
dkato 0:ee40da884cfc 73 # endif
dkato 0:ee40da884cfc 74 #else
dkato 0:ee40da884cfc 75 unsigned FLAC__fixed_compute_best_predictor(const FLAC__int32 data[], unsigned data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]);
dkato 0:ee40da884cfc 76 unsigned FLAC__fixed_compute_best_predictor_wide(const FLAC__int32 data[], unsigned data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]);
dkato 0:ee40da884cfc 77 #endif
dkato 0:ee40da884cfc 78
dkato 0:ee40da884cfc 79 /*
dkato 0:ee40da884cfc 80 * FLAC__fixed_compute_residual()
dkato 0:ee40da884cfc 81 * --------------------------------------------------------------------
dkato 0:ee40da884cfc 82 * Compute the residual signal obtained from sutracting the predicted
dkato 0:ee40da884cfc 83 * signal from the original.
dkato 0:ee40da884cfc 84 *
dkato 0:ee40da884cfc 85 * IN data[-order,data_len-1] original signal (NOTE THE INDICES!)
dkato 0:ee40da884cfc 86 * IN data_len length of original signal
dkato 0:ee40da884cfc 87 * IN order <= FLAC__MAX_FIXED_ORDER fixed-predictor order
dkato 0:ee40da884cfc 88 * OUT residual[0,data_len-1] residual signal
dkato 0:ee40da884cfc 89 */
dkato 0:ee40da884cfc 90 void FLAC__fixed_compute_residual(const FLAC__int32 data[], unsigned data_len, unsigned order, FLAC__int32 residual[]);
dkato 0:ee40da884cfc 91
dkato 0:ee40da884cfc 92 /*
dkato 0:ee40da884cfc 93 * FLAC__fixed_restore_signal()
dkato 0:ee40da884cfc 94 * --------------------------------------------------------------------
dkato 0:ee40da884cfc 95 * Restore the original signal by summing the residual and the
dkato 0:ee40da884cfc 96 * predictor.
dkato 0:ee40da884cfc 97 *
dkato 0:ee40da884cfc 98 * IN residual[0,data_len-1] residual signal
dkato 0:ee40da884cfc 99 * IN data_len length of original signal
dkato 0:ee40da884cfc 100 * IN order <= FLAC__MAX_FIXED_ORDER fixed-predictor order
dkato 0:ee40da884cfc 101 * *** IMPORTANT: the caller must pass in the historical samples:
dkato 0:ee40da884cfc 102 * IN data[-order,-1] previously-reconstructed historical samples
dkato 0:ee40da884cfc 103 * OUT data[0,data_len-1] original signal
dkato 0:ee40da884cfc 104 */
dkato 0:ee40da884cfc 105 void FLAC__fixed_restore_signal(const FLAC__int32 residual[], unsigned data_len, unsigned order, FLAC__int32 data[]);
dkato 0:ee40da884cfc 106
dkato 0:ee40da884cfc 107 #endif