Bibliothèque pur gps, trame NMEA, conversion des coordonnées au format WSG84
Dependencies: mbed
Fork of GPSINT by
GPSINT.cpp
- Committer:
- jebradshaw
- Date:
- 2014-11-05
- Revision:
- 1:c266b90b4c74
- Parent:
- 0:f3a7d716faea
- Child:
- 2:de2d5174457f
File content as of revision 1:c266b90b4c74:
/* GPSINT.cpp * jbradshaw (20141101) * GPS functions are work of Tyler Weavers mbed gps library page * (http://mbed.org/users/tylerjw/code/GPS/file/39d75e44b214/GPS.cpp) * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to deal * in the Software without restriction, including without limitation the rights * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell * copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN * THE SOFTWARE. */ #include "GPSINT.h" GPSINT::GPSINT(PinName tx, PinName rx) : _gps(tx, rx) { _gps.baud(4800); GPSidx=0; // Index for GPS buffer GPSstate=0; // Used to wait for '$' in GPS interrupt _gps.attach(this,&GPSINT::GPSSerialRecvInterrupt, _gps.RxIrq); // Recv interrupt handler } int GPSINT::nmea_validate(char *nmeastr){ char check[3]; char checkcalcstr[3]; int i; int calculated_check; i=0; calculated_check=0; // check to ensure that the string starts with a $ if(nmeastr[i] == '$') i++; else return 0; //No NULL reached, 75 char largest possible NMEA message, no '*' reached while((nmeastr[i] != 0) && (nmeastr[i] != '*') && (i < 75)){ calculated_check ^= nmeastr[i];// calculate the checksum i++; } if(i >= 75){ return 0;// the string was too long so return an error } if (nmeastr[i] == '*'){ check[0] = nmeastr[i+1]; //put hex chars in check string check[1] = nmeastr[i+2]; check[2] = 0; } else return 0;// no checksum separator found therefor invalid sprintf(checkcalcstr,"%02X",calculated_check); return((checkcalcstr[0] == check[0]) && (checkcalcstr[1] == check[1])) ? 1 : 0 ; } void GPSINT::parseGPSString(char *GPSstrParse){ //check if $GPGGA string if(!strncmp(GPSstrParse, "$GPGGA", 6)){ if (sscanf(GPSstrParse, "$GPGGA,%f,%f,%c,%f,%c,%d,%d,%f,%f,%c", &utc_time, &nmea_latitude, &ns, &nmea_longitude, &ew, &lock, &satelites, &hdop, &msl_altitude, &msl_units) >= 1) { // printf("%s", GPSstrParse); return; } else{ // printf("BAD parse %s", GPSstrParse); } } // Check if $GPRMC string else if (!strncmp(GPSstrParse, "$GPRMC", 6)){ if(sscanf(GPSstrParse, "$GPRMC,%f,%f,%c,%f,%c,%f,%f,%d", &utc_time, &nmea_latitude, &ns, &nmea_longitude, &ew, &speed_k, &course_d, &date) >= 1) { // printf("%s", GPSstrParse); return; } else{ // printf("BAD parse %s", GPSstrParse); } } // GLL - Geographic Position-Lat/Lon else if (!strncmp(GPSstrParse, "$GPGLL", 6)){ if(sscanf(GPSstrParse, "$GPGLL,%f,%c,%f,%c,%f,%c", &nmea_latitude, &ns, &nmea_longitude, &ew, &utc_time, &gll_status) >= 1) { // printf("%s", GPSstrParse); return; } else{ // printf("BAD parse %s", GPSstrParse); } } // VTG-Course Over Ground and Ground Speed else if (!strncmp(GPSstrParse, "$GPVTG", 6)){ if(sscanf(GPSstrParse, "$GPVTG,%f,%c,%f,%c,%f,%c,%f,%c", &course_t, &course_t_unit, &course_m, &course_m_unit, &speed_k, &speed_k_unit, &speed_km, &speed_km_unit) >= 1) { // printf("%s", GPSstrParse); return; } else{ // printf("BAD parse %s", GPSstrParse); } } }//parseGPSstring() void GPSINT::GPSSerialRecvInterrupt(void) { char c; c =_gps.getc(); // On receive interrupt, get the character. // pc.printf("%c", c); switch(GPSstate){ case 0: if(c =='$'){ GPSidx=0; Temp_GPSbuf[GPSidx] = c; //load char in current idx of array GPSidx++; GPSstate = 1; } break; case 1: Temp_GPSbuf[GPSidx] = c; //load char in current idx of array GPSidx++; if(c == '\n'){ //if last char was a newline Temp_GPSbuf[GPSidx] = '\0'; //append a NULL strcpy(GPSbuf, Temp_GPSbuf); //copy temp buf into GPS buf GPSidx=0; //reset index GPSstate = 0; //reset GPS state if(nmea_validate(GPSbuf)){ parseGPSString(GPSbuf); } } break; default: break; }//switch state } float GPSINT::nmea_to_dec(float deg_coord, char nsew) { int degree = (int)(deg_coord/100); float minutes = deg_coord - degree*100; float dec_deg = minutes / 60; float decimal = degree + dec_deg; if (nsew == 'S' || nsew == 'W') { // return negative decimal *= -1; } return decimal; } // NAVIGATION FUNCTIONS //////////////////////////////////////////////////////////// float GPSINT::calc_course_to(float pointLat, float pontLong) { const double d2r = PI / 180.0; const double r2d = 180.0 / PI; double dlat = abs(pointLat - dec_latitude) * d2r; double dlong = abs(pontLong - dec_longitude) * d2r; double y = sin(dlong) * cos(pointLat * d2r); double x = cos(dec_latitude*d2r)*sin(pointLat*d2r) - sin(dec_latitude*d2r)*cos(pointLat*d2r)*cos(dlong); return atan2(y,x)*r2d; } /* var y = Math.sin(dLon) * Math.cos(lat2); var x = Math.cos(lat1)*Math.sin(lat2) - Math.sin(lat1)*Math.cos(lat2)*Math.cos(dLon); var brng = Math.atan2(y, x).toDeg(); */ /* The Haversine formula according to Dr. Math. http://mathforum.org/library/drmath/view/51879.html dlon = lon2 - lon1 dlat = lat2 - lat1 a = (sin(dlat/2))^2 + cos(lat1) * cos(lat2) * (sin(dlon/2))^2 c = 2 * atan2(sqrt(a), sqrt(1-a)) d = R * c Where * dlon is the change in longitude * dlat is the change in latitude * c is the great circle distance in Radians. * R is the radius of a spherical Earth. * The locations of the two points in spherical coordinates (longitude and latitude) are lon1,lat1 and lon2, lat2. */ double GPSINT::calc_dist_to_mi(float pointLat, float pontLong) { const double d2r = PI / 180.0; double dlat = pointLat - dec_latitude; double dlong = pontLong - dec_longitude; double a = pow(sin(dlat/2.0),2.0) + cos(dec_latitude*d2r) * cos(pointLat*d2r) * pow(sin(dlong/2.0),2.0); double c = 2.0 * asin(sqrt(abs(a))); double d = 63.765 * c; return d; } double GPSINT::calc_dist_to_ft(float pointLat, float pontLong) { return calc_dist_to_mi(pointLat, pontLong)*5280.0; } double GPSINT::calc_dist_to_km(float pointLat, float pontLong) { return calc_dist_to_mi(pointLat, pontLong)*1.609344; } double GPSINT::calc_dist_to_m(float pointLat, float pontLong) { return calc_dist_to_mi(pointLat, pontLong)*1609.344; }