Reference firmware for PixArt's PMW3901MB sensor and evaluation board. "Hello World" and "Library" contain the exact same files. Please import just one of the two into your mBed compiler as a new program and not as a library.
Welcome to the code repository for PixArt's PMW3901MB sensor and evaluation board.
For general information about this product, please visit this product's components page here:
https://os.mbed.com/components/PMW3901MB-Far-Field-Optical-Motion-Track/
For guides and tips on how to setup and evaluate the PMW3901MB sensor with the Nordic nRF52-DK microcontroller using this reference code, please visit this guide:
https://os.mbed.com/teams/PixArt/code/3901_referenceFirmware/wiki/Guide-for-nRF52-DK-Platform
For guides and tips on how to setup and evaluate the PMW3901MB sensor with any microcontroller using this reference code, please visit this guide:
https://os.mbed.com/teams/PixArt/code/3901_referenceFirmware/wiki/Guide-for-Any-Platform
commHeaders/SPIcommFunctions.h
- Committer:
- PixArtVY
- Date:
- 2018-03-14
- Revision:
- 0:c00f2464eee3
File content as of revision 0:c00f2464eee3:
//=========================================================================
//Communication pinouts for serial COM port, SPI, and interrupts
//=========================================================================
static Serial pc(USBTX, USBRX); //PC comm
static SPI spi(p23, p24, p25); //mosi, miso, sclk
static DigitalOut cs(p22); //chip select
//=========================================================================
//Variables and arrays used for communications and data storage
//=========================================================================
int8_t deltaX_low, deltaY_low; //Stores the low-bits of movement data.
int16_t deltaX_high, deltaY_high; //Stores the high-bits of movement data.
int16_t deltaX, deltaY; //Stores the combined value of low and high bits.
int16_t totalX, totalY = 0; //Stores the total deltaX and deltaY moved during runtime.
//=========================================================================
//Functions used to communicate with the sensor and grab/print data
//=========================================================================
uint8_t readRegister(uint8_t addr);
//This function takes an 8-bit address in the form 0x00 and returns an 8-bit value in the form 0x00.
void writeRegister(uint8_t addr, uint8_t data);
//This function takes an 8-bit address and 8-bit data. Writes the given data to the given address.
void initializeSensor(void);
//Sets all of the registers needed for initialization and performance optimization.
void grabData(void);
//Grabs the deltaX and deltaY information from the proper registers and formats it into the proper format.
void printData(void);
//Prints the data out to a serial terminal.
//=========================================================================
//Functions definitions
//=========================================================================
uint8_t readRegister(uint8_t addr)
{
cs = 0; //Set chip select low/active
addr = addr & 0x7F; //Set MSB to 0 to indicate read operation
spi.write(addr); //Write the given address
wait_us(35); //Add a tiny delay after sending address for some internal cycle timing.
uint8_t data_read = spi.write(0x00); //Throw dummy byte after sending address to receieve data
cs = 1; //Set chip select back to high/inactive
return data_read; //Returns 8-bit data from register
}
//=========================================================================
void writeRegister(uint8_t addr, uint8_t data)
{
cs = 0; //Set chip select low/active
addr = addr | 0x80; //Set MSB to 1 to indicate write operation
spi.write(addr); //Write the given address
spi.write(data); //Write the given data
cs = 1; //Set chip select back to high/inactive
//pc.printf("R:%2X, D:%2X\n\r", addr, readRegister(addr));
//Uncomment this line for debugging. Prints every register write operation.
}
//=========================================================================
void initializeSensor(void)
{
writeRegister(0x7F, 0x00);
writeRegister(0x55, 0x01);
writeRegister(0x50, 0x07);
writeRegister(0x7F, 0x0E);
writeRegister(0x43, 0x10);
if(readRegister(0x67) & 0x40)
writeRegister(0x48, 0x04);
else
writeRegister(0x48, 0x02);
writeRegister(0x7F, 0x00);
writeRegister(0x51, 0x7B);
writeRegister(0x50, 0x00);
writeRegister(0x55, 0x00);
writeRegister(0x7F, 0x0E);
if(readRegister(0x73) == 0x00)
{
writeRegister(0x7F, 0x00);
writeRegister(0x61, 0xAD);
writeRegister(0x51, 0x70);
writeRegister(0x7F, 0x0E);
if(readRegister(0x70) <= 28)
writeRegister(0x70, readRegister(0x70) + 14);
else
writeRegister(0x70, readRegister(0x70) + 11);
writeRegister(0x71, readRegister(0x71) * 45/100);
}
writeRegister(0x7F, 0x00);
writeRegister(0x61, 0xAD);
writeRegister(0x7F, 0x03);
writeRegister(0x40, 0x00);
writeRegister(0x7F, 0x05);
writeRegister(0x41, 0xB3);
writeRegister(0x43, 0xF1);
writeRegister(0x45, 0x14);
writeRegister(0x5B, 0x32);
writeRegister(0x5F, 0x34);
writeRegister(0x7B, 0x08);
writeRegister(0x7F, 0x06);
writeRegister(0x44, 0x1B);
writeRegister(0x40, 0xBF);
writeRegister(0x4E, 0x3F);
writeRegister(0x7F, 0x06);
writeRegister(0x44, 0x1B);
writeRegister(0x40, 0xBF);
writeRegister(0x4E, 0x3F);
writeRegister(0x7F, 0x08);
writeRegister(0x65, 0x20);
writeRegister(0x6A, 0x18);
writeRegister(0x7F, 0x09);
writeRegister(0x4F, 0xAF);
writeRegister(0x5F, 0x40);
writeRegister(0x48, 0x80);
writeRegister(0x49, 0x80);
writeRegister(0x57, 0x77);
writeRegister(0x60, 0x78);
writeRegister(0x61, 0x78);
writeRegister(0x62, 0x08);
writeRegister(0x63, 0x50);
writeRegister(0x7F, 0x0A);
writeRegister(0x45, 0x60);
writeRegister(0x7F, 0x00);
writeRegister(0x4D, 0x11);
writeRegister(0x55, 0x80);
writeRegister(0x74, 0x21);
writeRegister(0x75, 0x1F);
writeRegister(0x4A, 0x78);
writeRegister(0x4B, 0x78);
writeRegister(0x44, 0x08);
writeRegister(0x45, 0x50);
writeRegister(0x64, 0xFF);
writeRegister(0x65, 0x1F);
writeRegister(0x7F, 0x14);
writeRegister(0x65, 0x67);
writeRegister(0x66, 0x08);
writeRegister(0x63, 0x70);
writeRegister(0x7F, 0x15);
writeRegister(0x48, 0x48);
writeRegister(0x7F, 0x07);
writeRegister(0x41, 0x0D);
writeRegister(0x43, 0x14);
writeRegister(0x4B, 0x0E);
writeRegister(0x45, 0x0F);
writeRegister(0x44, 0x42);
writeRegister(0x4C, 0x80);
writeRegister(0x7F, 0x10);
writeRegister(0x5B, 0x02);
writeRegister(0x7F, 0x07);
writeRegister(0x40, 0x41);
writeRegister(0x70, 0x00);
wait_ms(10);
writeRegister(0x32, 0x44);
writeRegister(0x7F, 0x07);
writeRegister(0x40, 0x40);
writeRegister(0x7F, 0x06);
writeRegister(0x62, 0xF0);
writeRegister(0x63, 0x00);
writeRegister(0x7F, 0x0D);
writeRegister(0x48, 0xC0);
writeRegister(0x6F, 0xD5);
writeRegister(0x7F, 0x00);
writeRegister(0x5B, 0xA0);
writeRegister(0x4E, 0xA8);
writeRegister(0x5A, 0x50);
writeRegister(0x40, 0x80);
}
//=========================================================================
void grabData(void)
{
deltaX_low = readRegister(0x03); //Grabs data from the proper registers.
deltaX_high = (readRegister(0x04)<<8) & 0xFF00; //Grabs data and shifts it to make space to be combined with lower bits.
deltaY_low = readRegister(0x05);
deltaY_high = (readRegister(0x06)<<8) & 0xFF00;
deltaX = deltaX_high | deltaX_low; //Combines the low and high bits.
deltaY = deltaY_high | deltaY_low;
}
//=========================================================================
void printData(void)
{
if((deltaX != 0) || (deltaY != 0)) //If there is deltaX or deltaY movement, print the data.
{
totalX += deltaX;
totalY += deltaY;
pc.printf("deltaX: %d\t\t\tdeltaY: %d\n\r", deltaX, deltaY); //Prints each individual count of deltaX and deltaY.
pc.printf("X-axis Counts: %d\t\tY-axis Counts: %d\n\r", totalX, totalY); //Prints the total movement made during runtime.
}
deltaX = 0; //Resets deltaX and Y values to zero, otherwise previous data is stored until overwritten.
deltaY = 0;
}
PMW3901MB | Far-Field Optical Motion Tracking Sensor