init
Dependencies: aconno_I2C Lis2dh12 WatchdogTimer
Revision 58:8d4a354816b1, committed 2020-02-17
- Comitter:
- pathfindr
- Date:
- Mon Feb 17 23:24:52 2020 +0000
- Parent:
- 57:066dfbe8b4b9
- Commit message:
- usb
Changed in this revision
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/DW1000/DW1000.cpp Mon Feb 17 23:24:52 2020 +0000
@@ -0,0 +1,446 @@
+// Adapted from Matthias Grob & Manuel Stalder - ETH Zürich - 2015
+#include "DW1000.h"
+#include "NRFuart.h"
+
+// Change this depending on whether damaged or heatlhy DWM1000 modules are used.
+const bool DWM1000_DAMAGED = false;
+//const bool DWM1000_DAMAGED = false;
+
+/*DW1000::DW1000(PinName MOSI, PinName MISO, PinName SCLK, PinName CS, PinName IRQ, PinName RESET) : irq(IRQ), spi(MOSI, MISO, SCLK), cs(CS), reset(RESET) {
+ irq.rise(this, &DW1000::ISR);
+ */
+
+DW1000::DW1000(PinName MOSI, PinName MISO, PinName SCLK, PinName CS, PinName IRQ, PinName RESET) : irq(IRQ), spi(MOSI, MISO, SCLK), cs(CS), reset(RESET) {
+ //irq.rise(this, &DW1000::ISR);
+
+ //setCallbacks(NULL, NULL);
+
+ select();
+ deselect(); // Chip must be deselected first
+ resetAll(); // we do a soft reset of the DW1000 everytime the driver starts
+
+ // Configuration TODO: make method for that
+ // User Manual "2.5.5 Default Configurations that should be modified" p. 22
+ //Those values are for the standard mode (6.8Mbps, 5, 16Mhz, 32 Symbols) and are INCOMPLETE!
+// writeRegister16(DW1000_AGC_CTRL, 0x04, 0x8870);
+// writeRegister32(DW1000_AGC_CTRL, 0x0C, 0x2502A907);
+// writeRegister32(DW1000_DRX_CONF, 0x08, 0x311A002D);
+// writeRegister8 (DW1000_LDE_CTRL, 0x0806, 0xD);
+// writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x1607);
+// writeRegister32(DW1000_TX_POWER, 0, 0x0E082848);
+// writeRegister32(DW1000_RF_CONF, 0x0C, 0x001E3FE0);
+// writeRegister8 (DW1000_TX_CAL, 0x0B, 0xC0);
+// writeRegister8 (DW1000_FS_CTRL, 0x0B, 0xA6);
+
+
+ //Those values are for the 110kbps mode (5, 16MHz, 1024 Symbols) and are quite complete
+ writeRegister16(DW1000_AGC_CTRL, 0x04, 0x8870); //AGC_TUNE1 for 16MHz PRF
+ writeRegister32(DW1000_AGC_CTRL, 0x0C, 0x2502A907); //AGC_TUNE2 (Universal)
+ writeRegister16(DW1000_AGC_CTRL, 0x12, 0x0055); //AGC_TUNE3 (Universal)
+
+ writeRegister16(DW1000_DRX_CONF, 0x02, 0x000A); //DRX_TUNE0b for 110kbps
+ writeRegister16(DW1000_DRX_CONF, 0x04, 0x0087); //DRX_TUNE1a for 16MHz PRF
+ writeRegister16(DW1000_DRX_CONF, 0x06, 0x0064); //DRX_TUNE1b for 110kbps & > 1024 symbols
+ writeRegister32(DW1000_DRX_CONF, 0x08, 0x351A009A); //PAC size for 1024 symbols preamble & 16MHz PRF
+ //writeRegister32(DW1000_DRX_CONF, 0x08, 0x371A011D); //PAC size for 2048 symbols preamble
+
+ writeRegister8 (DW1000_LDE_CTRL, 0x0806, 0xD); //LDE_CFG1
+ writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x1607); //LDE_CFG2 for 16MHz PRF
+
+ writeRegister32(DW1000_TX_POWER, 0, 0x28282828); //Power for channel 5
+
+ writeRegister8(DW1000_RF_CONF, 0x0B, 0xD8); //RF_RXCTRLH for channel 5
+ writeRegister32(DW1000_RF_CONF, 0x0C, 0x001E3FE0); //RF_TXCTRL for channel 5
+
+ writeRegister8 (DW1000_TX_CAL, 0x0B, 0xC0); //TC_PGDELAY for channel 5
+
+ writeRegister32 (DW1000_FS_CTRL, 0x07, 0x0800041D); //FS_PLLCFG for channel 5
+ writeRegister8 (DW1000_FS_CTRL, 0x0B, 0xA6); //FS_PLLTUNE for channel 5
+
+ loadLDE(); // important everytime DW1000 initialises/awakes otherwise the LDE algorithm must be turned off or there's receiving malfunction see User Manual LDELOAD on p22 & p158
+
+ // 110kbps CAUTION: a lot of other registers have to be set for an optimized operation on 110kbps
+ writeRegister16(DW1000_TX_FCTRL, 1, 0x0800 | 0x0100 | 0x0080); // use 1024 symbols preamble (0x0800) (previously 2048 - 0x2800), 16MHz pulse repetition frequency (0x0100), 110kbps bit rate (0x0080) see p.69 of DW1000 User Manual
+ writeRegister8(DW1000_SYS_CFG, 2, 0x44); // enable special receiving option for 110kbps (disable smartTxPower)!! (0x44) see p.64 of DW1000 User Manual [DO NOT enable 1024 byte frames (0x03) becuase it generates disturbance of ranging don't know why...]
+
+ writeRegister16(DW1000_TX_ANTD, 0, 16384); // set TX and RX Antenna delay to neutral because we calibrate afterwards
+ writeRegister16(DW1000_LDE_CTRL, 0x1804, 16384); // = 2^14 a quarter of the range of the 16-Bit register which corresponds to zero calibration in a round trip (TX1+RX2+TX2+RX1)
+
+ writeRegister8(DW1000_SYS_CFG, 3, 0x20); // enable auto reenabling receiver after error
+
+ //irq.enable_irq();
+}
+
+/*
+void DW1000::setCallbacks(void (*callbackRX)(void), void (*callbackTX)(void)) {
+ bool RX = false;
+ bool TX = false;
+ if (callbackRX) {
+ this->callbackRX.attach(callbackRX);
+ RX = true;
+ }
+ if (callbackTX) {
+ this->callbackTX.attach(callbackTX);
+ TX = true;
+ }
+ setInterrupt(RX, TX);
+}
+*/
+
+uint32_t DW1000::getDeviceID() {
+ uint32_t result;
+ readRegister(DW1000_DEV_ID, 0, (uint8_t*)&result, 4);
+ return result;
+}
+
+uint64_t DW1000::getEUI() {
+ uint64_t result;
+ readRegister(DW1000_EUI, 0, (uint8_t*)&result, 8);
+ return result;
+}
+
+void DW1000::setEUI(uint64_t EUI) {
+ writeRegister(DW1000_EUI, 0, (uint8_t*)&EUI, 8);
+}
+
+float DW1000::getVoltage() {
+ uint8_t buffer[7] = {0x80, 0x0A, 0x0F, 0x01, 0x00}; // algorithm form User Manual p57
+ writeRegister(DW1000_RF_CONF, 0x11, buffer, 2);
+ writeRegister(DW1000_RF_CONF, 0x12, &buffer[2], 1);
+ writeRegister(DW1000_TX_CAL, 0x00, &buffer[3], 1);
+ writeRegister(DW1000_TX_CAL, 0x00, &buffer[4], 1);
+ readRegister(DW1000_TX_CAL, 0x03, &buffer[5], 2); // get the 8-Bit readings for Voltage and Temperature
+ float Voltage = buffer[5] * 0.0057 + 2.3;
+ //float Temperature = buffer[6] * 1.13 - 113.0; // TODO: getTemperature was always ~35 degree with better formula/calibration
+ return Voltage;
+}
+
+uint64_t DW1000::getStatus() {
+ return readRegister40(DW1000_SYS_STATUS, 0);
+}
+
+bool DW1000::hasReceivedFrame() {
+ uint64_t status = getStatus();
+ return status & 0x4000;
+}
+
+void DW1000::clearReceivedFlag() {
+ writeRegister16(DW1000_SYS_STATUS, 0, 0x6F00); // clearing of receiving status bits
+}
+
+bool DW1000::hasTransmissionStarted() {
+ uint64_t status = getStatus();
+ return status & 0x10;
+}
+
+bool DW1000::hasSentPreamble() {
+ uint64_t status = getStatus();
+ return status & 0x20;
+}
+
+bool DW1000::hasSentPHYHeader() {
+ uint64_t status = getStatus();
+ return status & 0x40;
+}
+
+bool DW1000::hasSentFrame() {
+ uint64_t status = getStatus();
+ return status & 0x80;
+}
+
+void DW1000::clearSentFlag() {
+ writeRegister8(DW1000_SYS_STATUS, 0, 0xF8); // clearing of sending status bits
+}
+
+uint64_t DW1000::getSYSTimestamp() {
+ return readRegister40(DW1000_SYS_TIME, 0);
+}
+
+uint64_t DW1000::getRXTimestamp() {
+ return readRegister40(DW1000_RX_TIME, 0);
+}
+
+uint64_t DW1000::getTXTimestamp() {
+ return readRegister40(DW1000_TX_TIME, 0);
+}
+
+float DW1000::getSYSTimestampUS() {
+ return getSYSTimestamp() * TIMEUNITS_TO_US;
+}
+
+float DW1000::getRXTimestampUS() {
+ return getRXTimestamp() * TIMEUNITS_TO_US;
+}
+
+float DW1000::getTXTimestampUS() {
+ return getTXTimestamp() * TIMEUNITS_TO_US;
+}
+
+uint16_t DW1000::getStdNoise() {
+ return readRegister16(DW1000_RX_FQUAL, 0x00);
+}
+
+uint16_t DW1000::getPACC() {
+ uint32_t v = readRegister32(DW1000_RX_FINFO, 0x00);
+ v >>= 20;
+ return static_cast<uint16_t>(v);
+}
+
+uint16_t DW1000::getFPINDEX() {
+ return readRegister16(DW1000_RX_TIME, 0x05);
+}
+
+uint16_t DW1000::getFPAMPL1() {
+ return readRegister16(DW1000_RX_TIME, 0x07);
+}
+
+uint16_t DW1000::getFPAMPL2() {
+ return readRegister16(DW1000_RX_FQUAL, 0x02);
+}
+
+uint16_t DW1000::getFPAMPL3() {
+ return readRegister16(DW1000_RX_FQUAL, 0x04);
+}
+
+uint16_t DW1000::getCIRPWR() {
+ return readRegister16(DW1000_RX_FQUAL, 0x06);
+}
+
+uint8_t DW1000::getPRF()
+{
+ uint32_t prf_mask = static_cast<uint32_t>(0x1 << 19 | 0x1 << 18);
+ uint32_t prf = readRegister32(DW1000_CHAN_CTRL, 0x00);
+ prf >>= 18;
+ return static_cast<uint8_t>(prf & prf_mask);
+}
+
+void DW1000::sendString(char* message) {
+ sendFrame((uint8_t*)message, strlen(message)+1);
+}
+
+void DW1000::receiveString(char* message) {
+ readRegister(DW1000_RX_BUFFER, 0, (uint8_t*)message, getFramelength()); // get data from buffer
+}
+
+void DW1000::sendFrame(uint8_t* message, uint16_t length) {
+ //if (length >= 1021) length = 1021; // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor]
+ if (length >= 125) length = 125; // check for maximim length a frame can have with 127 Byte frames
+
+ Timer timer;
+ timer.start();
+ writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer
+
+ uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame
+ length += 2; // including 2 CRC Bytes
+ length = ((backup & 0xFC) << 8) | (length & 0x03FF);
+ writeRegister16(DW1000_TX_FCTRL, 0, length);
+
+ stopTRX(); // stop receiving
+ writeRegister8(DW1000_SYS_CTRL, 0, 0x02); // trigger sending process by setting the TXSTRT bit
+}
+
+void DW1000::sendDelayedFrame(uint8_t* message, uint16_t length, uint64_t TxTimestamp) {
+ clearSentFlag(); // This is necessary, otherwise we pick up the transmission time of the previous send
+
+ if (TxTimestamp > CONST_2POWER40) {
+ TxTimestamp -= CONST_2POWER40;
+ }
+
+ //if (length >= 1021) length = 1021; // check for maximim length a frame can have with 1024 Byte frames [not used, see constructor]
+ if (length >= 125) length = 125; // check for maximim length a frame can have with 127 Byte frames
+ writeRegister(DW1000_TX_BUFFER, 0, message, length); // fill buffer
+
+ uint8_t backup = readRegister8(DW1000_TX_FCTRL, 1); // put length of frame
+ length += 2; // including 2 CRC Bytes
+ length = ((backup & 0xFC) << 8) | (length & 0x03FF);
+ writeRegister16(DW1000_TX_FCTRL, 0, length);
+
+ writeRegister40(DW1000_DX_TIME, 0, TxTimestamp); //write the timestamp on which to send the message
+
+ stopTRX(); // stop receiving
+ writeRegister8(DW1000_SYS_CTRL, 0, 0x02 | 0x04); // trigger sending process by setting the TXSTRT and TXDLYS bit
+}
+
+void DW1000::startRX() {
+ writeRegister8(DW1000_SYS_CTRL, 0x01, 0x01); // start listening for preamble by setting the RXENAB bit
+ wait_us(16); // According to page 81 in the user manual (RXENAB bit)
+}
+
+void DW1000::stopTRX() {
+ writeRegister8(DW1000_SYS_CTRL, 0, 0x40); // disable tranceiver go back to idle mode by setting the TRXOFF bit
+}
+
+// PRIVATE Methods ------------------------------------------------------------------------------------
+void DW1000::loadLDE() { // initialise LDE algorithm LDELOAD User Manual p22
+ writeRegister16(DW1000_PMSC, 0, 0x0301); // set clock to XTAL so OTP is reliable
+ writeRegister16(DW1000_OTP_IF, 0x06, 0x8000); // set LDELOAD bit in OTP
+ wait_us(150);
+ writeRegister16(DW1000_PMSC, 0, 0x0200); // recover to PLL clock
+}
+
+void DW1000::resetRX() {
+ writeRegister8(DW1000_PMSC, 3, 0xE0); // set RX reset
+ writeRegister8(DW1000_PMSC, 3, 0xF0); // clear RX reset
+}
+
+void DW1000::hardwareReset(PinName reset_pin) {
+ DigitalInOut reset(reset_pin);
+ hardwareReset(reset);
+}
+
+void DW1000::hardwareReset(DigitalInOut& reset) {
+ if (reset.is_connected()) {
+ // DWM1000 RESET logic.
+ if (DWM1000_DAMAGED) {
+ /*
+ // The following code works for damaged DWM1000 modules.
+ // IMPORTANT: This will damage healthy DWM1000 modules!
+ reset.output();
+ reset = 1;
+ wait_ms(100);
+ reset = 0;
+ wait_ms(100);
+ reset = 1;
+ wait_ms(100);
+ */
+ } else {
+ // The following code works for healthy DWM1000 modules
+ reset.output();
+ reset = 0;
+ wait_ms(100);
+ reset.input();
+ }
+ }
+}
+
+void DW1000::softwareReset() {
+ stopTRX();
+ clearReceivedFlag();
+ clearSentFlag();
+}
+
+void DW1000::resetAll() {
+ hardwareReset(reset);
+
+ writeRegister8(DW1000_PMSC, 0, 0x01); // set clock to XTAL
+ writeRegister8(DW1000_PMSC, 3, 0x00); // set All reset
+ wait_us(10); // wait for PLL to lock
+ writeRegister8(DW1000_PMSC, 3, 0xF0); // clear All reset
+}
+
+
+void DW1000::setInterrupt(bool RX, bool TX) {
+ writeRegister16(DW1000_SYS_MASK, 0, RX*0x4000 | TX*0x0080); // RX good frame 0x4000, TX done 0x0080
+}
+
+/*
+void DW1000::ISR() {
+ uint64_t status = getStatus();
+ if (status & 0x4000) { // a frame was received
+ callbackRX.call();
+ writeRegister16(DW1000_SYS_STATUS, 0, 0x6F00); // clearing of receiving status bits
+ }
+ if (status & 0x80) { // sending complete
+ callbackTX.call();
+ writeRegister8(DW1000_SYS_STATUS, 0, 0xF8); // clearing of sending status bits
+ }
+}
+*/
+
+uint16_t DW1000::getFramelength() {
+ uint16_t framelength = readRegister16(DW1000_RX_FINFO, 0); // get framelength
+ framelength = (framelength & 0x03FF) - 2; // take only the right bits and subtract the 2 CRC Bytes
+ return framelength;
+}
+
+// SPI Interface ------------------------------------------------------------------------------------
+uint8_t DW1000::readRegister8(uint8_t reg, uint16_t subaddress) {
+ uint8_t result;
+ readRegister(reg, subaddress, &result, 1);
+ return result;
+}
+
+uint16_t DW1000::readRegister16(uint8_t reg, uint16_t subaddress) {
+ uint16_t result;
+ readRegister(reg, subaddress, (uint8_t*)&result, 2);
+ return result;
+}
+
+uint32_t DW1000::readRegister32(uint8_t reg, uint16_t subaddress) {
+ uint32_t result;
+ readRegister(reg, subaddress, (uint8_t*)&result, 4);
+ return result;
+}
+
+uint64_t DW1000::readRegister40(uint8_t reg, uint16_t subaddress) {
+ uint64_t result;
+ readRegister(reg, subaddress, (uint8_t*)&result, 5);
+ result &= 0xFFFFFFFFFF; // only 40-Bit
+ return result;
+}
+
+void DW1000::writeRegister8(uint8_t reg, uint16_t subaddress, uint8_t buffer) {
+ writeRegister(reg, subaddress, &buffer, 1);
+}
+
+void DW1000::writeRegister16(uint8_t reg, uint16_t subaddress, uint16_t buffer) {
+ writeRegister(reg, subaddress, (uint8_t*)&buffer, 2);
+}
+
+void DW1000::writeRegister32(uint8_t reg, uint16_t subaddress, uint32_t buffer) {
+ writeRegister(reg, subaddress, (uint8_t*)&buffer, 4);
+}
+
+void DW1000::writeRegister40(uint8_t reg, uint16_t subaddress, uint64_t buffer) {
+ writeRegister(reg, subaddress, (uint8_t*)&buffer, 5);
+}
+
+void DW1000::readRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) {
+ setupTransaction(reg, subaddress, false);
+ for(int i=0; i<length; i++) // get data
+ buffer[i] = spi.write(0x00);
+ deselect();
+}
+
+void DW1000::writeRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length) {
+ setupTransaction(reg, subaddress, true);
+ for(int i=0; i<length; i++) // put data
+ spi.write(buffer[i]);
+ deselect();
+}
+
+void DW1000::setupTransaction(uint8_t reg, uint16_t subaddress, bool write) {
+ reg |= (write * DW1000_WRITE_FLAG); // set read/write flag
+ select();
+ if (subaddress > 0) { // there's a subadress, we need to set flag and send second header byte
+ spi.write(reg | DW1000_SUBADDRESS_FLAG);
+ if (subaddress > 0x7F) { // sub address too long, we need to set flag and send third header byte
+ spi.write((uint8_t)(subaddress & 0x7F) | DW1000_2_SUBADDRESS_FLAG); // and
+ spi.write((uint8_t)(subaddress >> 7));
+ } else {
+ spi.write((uint8_t)subaddress);
+ }
+ } else {
+ spi.write(reg); // say which register address we want to access
+ }
+}
+
+void DW1000::select() { // always called to start an SPI transmission
+ /*
+ if (irq != NULL) {
+ //irq->disable_irq();
+ irq.disable_irq();
+ }
+ */
+ cs = 0; // set Cable Select pin low to start transmission
+}
+
+void DW1000::deselect() { // always called to end an SPI transmission
+ cs = 1; // set Cable Select pin high to stop transmission
+ /*
+ if (irq != NULL) {
+ //irq->enable_irq();
+ irq.enable_irq();
+ }
+ */
+}
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/DW1000/DW1000.h Mon Feb 17 23:24:52 2020 +0000
@@ -0,0 +1,151 @@
+// Adapted from Matthias Grob & Manuel Stalder - ETH Zürich - 2015
+
+#ifndef DW1000_H
+#define DW1000_H
+
+#include "mbed.h"
+
+// register addresses
+// Mnemonic Address Bytes Description
+#define DW1000_DEV_ID 0x00 // 4 Device Identifier – includes device type and revision information
+#define DW1000_EUI 0x01 // 8 Extended Unique Identifier
+#define DW1000_PANADR 0x03 // 4 PAN Identifier and Short Address
+#define DW1000_SYS_CFG 0x04 // 4 System Configuration bitmap
+#define DW1000_SYS_TIME 0x06 // 5 System Time Counter (40-bit)
+#define DW1000_TX_FCTRL 0x08 // 5 Transmit Frame Control
+#define DW1000_TX_BUFFER 0x09 // 1024 Transmit Data Buffer
+#define DW1000_DX_TIME 0x0A // 5 Delayed Send or Receive Time (40-bit)
+#define DW1000_RX_FWTO 0x0C // 2 Receive Frame Wait Timeout Period
+#define DW1000_SYS_CTRL 0x0D // 4 System Control Register
+#define DW1000_SYS_MASK 0x0E // 4 System Event Mask Register
+#define DW1000_SYS_STATUS 0x0F // 5 System Event Status Register
+#define DW1000_RX_FINFO 0x10 // 4 RX Frame Information (in double buffer set)
+#define DW1000_RX_BUFFER 0x11 // 1024 Receive Data Buffer (in double buffer set)
+#define DW1000_RX_FQUAL 0x12 // 8 Rx Frame Quality information (in double buffer set)
+#define DW1000_RX_TTCKI 0x13 // 4 Receiver Time Tracking Interval (in double buffer set)
+#define DW1000_RX_TTCKO 0x14 // 5 Receiver Time Tracking Offset (in double buffer set)
+#define DW1000_RX_TIME 0x15 // 14 Receive Message Time of Arrival (in double buffer set)
+#define DW1000_TX_TIME 0x17 // 10 Transmit Message Time of Sending (in double buffer set)
+#define DW1000_TX_ANTD 0x18 // 2 16-bit Delay from Transmit to Antenna
+#define DW1000_SYS_STATE 0x19 // 5 System State information
+#define DW1000_ACK_RESP_T 0x1A // 4 Acknowledgement Time and Response Time
+#define DW1000_RX_SNIFF 0x1D // 4 Pulsed Preamble Reception Configuration
+#define DW1000_TX_POWER 0x1E // 4 TX Power Control
+#define DW1000_CHAN_CTRL 0x1F // 4 Channel Control
+#define DW1000_USR_SFD 0x21 // 41 User-specified short/long TX/RX SFD sequences
+#define DW1000_AGC_CTRL 0x23 // 32 Automatic Gain Control configuration
+#define DW1000_EXT_SYNC 0x24 // 12 External synchronisation control.
+#define DW1000_ACC_MEM 0x25 // 4064 Read access to accumulator data
+#define DW1000_GPIO_CTRL 0x26 // 44 Peripheral register bus 1 access - GPIO control
+#define DW1000_DRX_CONF 0x27 // 44 Digital Receiver configuration
+#define DW1000_RF_CONF 0x28 // 58 Analog RF Configuration
+#define DW1000_TX_CAL 0x2A // 52 Transmitter calibration block
+#define DW1000_FS_CTRL 0x2B // 21 Frequency synthesiser control block
+#define DW1000_AON 0x2C // 12 Always-On register set
+#define DW1000_OTP_IF 0x2D // 18 One Time Programmable Memory Interface
+#define DW1000_LDE_CTRL 0x2E // - Leading edge detection control block
+#define DW1000_DIG_DIAG 0x2F // 41 Digital Diagnostics Interface
+#define DW1000_PMSC 0x36 // 48 Power Management System Control Block
+
+#define DW1000_WRITE_FLAG 0x80 // First Bit of the address has to be 1 to indicate we want to write
+#define DW1000_SUBADDRESS_FLAG 0x40 // if we have a sub address second Bit has to be 1
+#define DW1000_2_SUBADDRESS_FLAG 0x80 // if we have a long sub adress (more than 7 Bit) we set this Bit in the first part
+
+
+
+//#define SYS_STATUS_ALL_RX_ERR (SYS_STATUS_RXPHE | SYS_STATUS_RXFCE | SYS_STATUS_RXRFSL | SYS_STATUS_RXSFDTO | SYS_STATUS_AFFREJ | SYS_STATUS_LDEERR)
+
+
+class DW1000
+{
+ public:
+ const static float TIMEUNITS_TO_US = (1/(128*499.2f)); // conversion between the decawave timeunits (ca 15.65ps) to microseconds.
+ const static float US_TO_TIMEUNITS = (128*499.2f); // conversion between microseconds to the decawave timeunits (ca 15.65ps).
+ const static uint64_t CONST_2POWER40 = 1099511627776; // Time register in DW1000 is 40 bit so this is needed to detect overflows.
+
+ DW1000(PinName MOSI, PinName MISO, PinName SCLK, PinName CS, PinName IRQ, PinName RESET); // constructor, uses SPI class // constructor, uses SPI class
+
+ void setCallbacks(void (*callbackRX)(void), void (*callbackTX)(void)); // setter for callback functions, automatically enables interrupt, if NULL is passed the coresponding interrupt gets disabled
+ template<typename T>
+ void setCallbacks(T* tptr, void (T::*mptrRX)(void), void (T::*mptrTX)(void))
+ { // overloaded setter to treat member function pointers of objects
+ callbackRX.attach(tptr, mptrRX); // possible client code: dw.setCallbacks(this, &A::callbackRX, &A::callbackTX);
+ callbackTX.attach(tptr, mptrTX); // concept seen in line 100 of http://developer.mbed.org/users/mbed_official/code/mbed/docs/4fc01daae5a5/InterruptIn_8h_source.html
+ setInterrupt(true,true);
+ }
+
+ // Device API
+ uint32_t getDeviceID(); // gets the Device ID which should be 0xDECA0130 (good for testing SPI!)
+ uint64_t getEUI(); // gets 64 bit Extended Unique Identifier according to IEEE standard
+ void setEUI(uint64_t EUI); // sets 64 bit Extended Unique Identifier according to IEEE standard
+ float getVoltage(); // gets the current chip voltage measurement form the A/D converter
+ uint64_t getStatus(); // get the 40 bit device status
+ bool hasTransmissionStarted(); // check if frame transmission has started
+ bool hasSentPreamble(); // check if preamble has been sent
+ bool hasSentPHYHeader(); // check if PHY header has been sent
+ bool hasSentFrame(); // check if frame has been sent completely
+ bool hasReceivedFrame();
+ void clearReceivedFlag();
+ void clearSentFlag();
+ uint64_t getSYSTimestamp();
+ uint64_t getRXTimestamp();
+ uint64_t getTXTimestamp();
+ float getSYSTimestampUS();
+ float getRXTimestampUS();
+ float getTXTimestampUS();
+
+ uint16_t getStdNoise();
+ uint16_t getPACC();
+ uint16_t getFPINDEX();
+ uint16_t getFPAMPL1();
+ uint16_t getFPAMPL2();
+ uint16_t getFPAMPL3();
+ uint16_t getCIRPWR();
+ uint8_t getPRF();
+
+ void sendString(char* message); // to send String with arbitrary length
+ void receiveString(char* message); // to receive char string (length of the buffer must be 1021 to be safe)
+ void sendFrame(uint8_t* message, uint16_t length); // send a raw frame (length in bytes)
+ void sendDelayedFrame(uint8_t* message, uint16_t length, uint64_t TxTimestamp);
+ uint16_t getFramelength(); // to get the framelength of the received frame from the PHY header
+ void startRX(); // start listening for frames
+ void stopTRX(); // disable tranceiver go back to idle mode
+
+ static void hardwareReset(PinName reset_pin);
+ static void hardwareReset(DigitalInOut& reset_pin);
+ void softwareReset();
+
+ uint8_t readRegister8(uint8_t reg, uint16_t subaddress); // expressive methods to read or write the number of bits written in the name
+ uint16_t readRegister16(uint8_t reg, uint16_t subaddress);
+ uint32_t readRegister32(uint8_t reg, uint16_t subaddress);
+ uint64_t readRegister40(uint8_t reg, uint16_t subaddress);
+ void writeRegister8(uint8_t reg, uint16_t subaddress, uint8_t buffer);
+ void writeRegister16(uint8_t reg, uint16_t subaddress, uint16_t buffer);
+ void writeRegister32(uint8_t reg, uint16_t subaddress, uint32_t buffer);
+ void writeRegister40(uint8_t reg, uint16_t subaddress, uint64_t buffer);
+ void readRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length); // reads the selected part of a slave register into the buffer memory
+ void writeRegister(uint8_t reg, uint16_t subaddress, uint8_t *buffer, int length); // writes the buffer memory to the selected slave register
+
+ private:
+ void loadLDE(); // load the leading edge detection algorithm to RAM, [IMPORTANT because receiving malfunction may occur] see User Manual LDELOAD on p22 & p158
+ void resetRX(); // soft reset only the tranciever part of DW1000
+ void resetAll(); // soft reset the entire DW1000 (some registers stay as they were see User Manual)
+
+ // Interrupt
+ InterruptIn irq;
+ FunctionPointer callbackRX; // function pointer to callback which is called when successfull RX took place
+ FunctionPointer callbackTX; // function pointer to callback which is called when successfull TX took place
+ void setInterrupt(bool RX, bool TX); // set Interrupt for received a good frame (CRC ok) or transmission done
+ void ISR(); // interrupt handling method (also calls according callback methods)
+
+ // SPI Inteface
+ SPI spi; // SPI Bus
+ DigitalOut cs; // Slave selector for SPI-Bus (here explicitly needed to start and end SPI transactions also usable to wake up DW1000)
+ DigitalInOut reset;
+
+ void setupTransaction(uint8_t reg, uint16_t subaddress, bool write); // sets up an SPI read or write transaction with correct register address and offset
+ void select(); // selects the only slave for a transaction
+ void deselect();
+};
+
+#endif
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/DW1000/DW1000Utils.h Mon Feb 17 23:24:52 2020 +0000
@@ -0,0 +1,181 @@
+#pragma once
+
+#include <mbed.h>
+#include "DW1000.h"
+
+class DW1000Utils
+{
+public:
+ // Recommended settings:
+ // Data rate 110 kbps - Preamble length 2048 or 4096.
+ // Data rate 850 kbps - Preamble length 256, 512 or 1024.
+ // Data rate 6.8 Mbps - Preamble length 64.
+
+ const static uint32_t PREAMBLE_LENGTH_64 = (1 << 18);
+ const static uint32_t PREAMBLE_LENGTH_128 = (1 << 18) | (1 << 20);
+ const static uint32_t PREAMBLE_LENGTH_256 = (1 << 18) | (1 << 21);
+ const static uint32_t PREAMBLE_LENGTH_512 = (1 << 18) | (1 << 20) | (1 << 21);
+ const static uint32_t PREAMBLE_LENGTH_1024 = (1 << 19);
+ const static uint32_t PREAMBLE_LENGTH_2048 = (1 << 19) | (1 << 21);
+ const static uint32_t PREAMBLE_LENGTH_4096 = (1 << 18) | (1 << 19);
+
+ enum PrfSetting
+ {
+ PRF_16_MHz = 1,
+ PRF_64_MHz,
+ };
+
+ enum DataRateSetting
+ {
+ RATE_110_kbps = 1,
+ RATE_850_kbps,
+ RATE_6_8_Mbps,
+ };
+
+ // Set pulse repetition frequency
+ static void setPulseRepetitionFrequency(DW1000* dw_ptr, PrfSetting prf_setting)
+ {
+ // Transmit PRF setting (see page 75 of user manual)
+ uint32_t prf_value;
+ if (prf_setting == PRF_16_MHz)
+ {
+ prf_value = (1 << 16);
+ }
+ else
+ {
+ prf_value = (1 << 17);
+ }
+ uint32_t prf_mask = (1 << 16) | (1 << 17);
+ uint32_t tx_ctrl = dw_ptr->readRegister32(DW1000_TX_FCTRL, 0x00);
+ tx_ctrl &= ~prf_mask;
+ tx_ctrl |= (prf_value & prf_mask);
+ dw_ptr->writeRegister32(DW1000_TX_FCTRL, 0x00, tx_ctrl);
+
+ // Receive PRF setting (see page 109 and of user manual)
+ if (prf_setting == PRF_16_MHz)
+ {
+ prf_value = (1 << 18);
+ }
+ else
+ {
+ prf_value = (1 << 19);
+ }
+ prf_mask = (1 << 18) | (1 << 19);
+ uint32_t chan_ctrl = dw_ptr->readRegister32(DW1000_CHAN_CTRL, 0x00);
+ chan_ctrl &= ~prf_mask;
+ chan_ctrl |= (prf_value & prf_mask);
+ dw_ptr->writeRegister32(DW1000_CHAN_CTRL, 0x00, chan_ctrl);
+ }
+
+ // Set preamble length (see page 76 of user manual)
+ static void setPreambleLength(DW1000* dw_ptr, uint32_t preamble_setting)
+ {
+ uint32_t preamble_mask = (1 << 18) | (1 << 19) | (1 << 20) | (1 << 21);
+ uint32_t tx_ctrl = dw_ptr->readRegister32(DW1000_TX_FCTRL, 0x00);
+ tx_ctrl &= ~preamble_mask;
+ tx_ctrl |= (preamble_setting & preamble_mask);
+ dw_ptr->writeRegister32(DW1000_TX_FCTRL, 0x00, tx_ctrl);
+ }
+
+ // Set data rate
+ static void setDataRate(DW1000* dw_ptr, DataRateSetting rate_setting)
+ {
+ // Transmit data rate (see page 73 of user manual)
+ uint32_t rate_value;
+ if (rate_setting == RATE_110_kbps)
+ {
+ rate_value = 0;
+ }
+ else if (rate_setting == RATE_850_kbps)
+ {
+ rate_value = (1 << 13);
+ }
+ else
+ {
+ rate_value = (1 << 14);
+ }
+ uint32_t rate_mask = (1 << 13) | (1 << 14);
+ uint32_t tx_ctrl = dw_ptr->readRegister32(DW1000_TX_FCTRL, 0x00);
+ tx_ctrl &= ~rate_mask;
+ tx_ctrl |= (rate_value & rate_mask);
+ dw_ptr->writeRegister32(DW1000_TX_FCTRL, 0x00, tx_ctrl);
+
+ // Receive data rate (see page 72 of user manual)
+ if (rate_setting == RATE_110_kbps)
+ {
+ rate_value = (1 << 18);
+ rate_value = (1 << 22);
+ }
+ else if (rate_setting == RATE_850_kbps)
+ {
+ rate_value = (1 << 18);
+ }
+ else
+ {
+ rate_value = 0;
+ }
+ rate_mask = (1 << 18) | (1 << 22);
+ uint32_t sys_cfg = dw_ptr->readRegister32(DW1000_SYS_CFG, 0x00);
+ sys_cfg &= ~rate_mask;
+ sys_cfg |= (rate_value & rate_mask);
+ dw_ptr->writeRegister32(DW1000_SYS_CFG, 0x00, sys_cfg);
+
+ if (rate_setting == RATE_110_kbps)
+ {
+ dw_ptr->writeRegister16(DW1000_DRX_CONF, 0x02, 0x000A); // DRX_TUNE0b for 110 kbps
+ dw_ptr->writeRegister16(DW1000_DRX_CONF, 0x06, 0x0064); // DRX_TUNE1b for 110 kbps & > 1024 symbols
+ }
+ else if (rate_setting == RATE_850_kbps)
+ {
+ dw_ptr->writeRegister16(DW1000_DRX_CONF, 0x02, 0x0001); // DRX_TUNE0b for 850 kbps
+ dw_ptr->writeRegister16(DW1000_DRX_CONF, 0x06, 0x0020); // DRX_TUNE1b for 850 kbps & 128 - 1024 symbols
+ }
+ else
+ {
+ dw_ptr->writeRegister16(DW1000_DRX_CONF, 0x02, 0x0001); // DRX_TUNE0b for 6.8 Mbps
+ dw_ptr->writeRegister16(DW1000_DRX_CONF, 0x06, 0x0010); // DRX_TUNE1b for 6.8 Mbps & 64 symbols
+ }
+ }
+
+ // Improved settings for direct path detection in non-line-of-sight environments.
+ // See DecaWave Application Note APS006.
+ static void setNLOSSettings(DW1000* dw_ptr, DataRateSetting rate_setting = RATE_850_kbps, PrfSetting prf_setting = PRF_16_MHz, uint32_t preamble_setting = PREAMBLE_LENGTH_1024)
+ {
+ setDataRate(dw_ptr, rate_setting);
+ setPulseRepetitionFrequency(dw_ptr, prf_setting);
+ setPreambleLength(dw_ptr, preamble_setting);
+
+ // Setting for Noise Threshold Multiplier 1
+ dw_ptr->writeRegister8(DW1000_LDE_CTRL, 0x0806, 0x07); // LDE_CFG1
+ // Setting for Noise Threshold Multiplier 2
+ if (prf_setting == PRF_16_MHz)
+ {
+ dw_ptr->writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x0003); // LDE_CFG2 for 16 MHz PRF
+ }
+ else
+ {
+ dw_ptr->writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x1603); // LDE_CFG2 for 64 MHz PRF
+ }
+ }
+
+ // Default settings for line-of-sight environments
+ static void setLOSSettings(DW1000* dw_ptr, DataRateSetting rate_setting = RATE_850_kbps, PrfSetting prf_setting = PRF_16_MHz, uint32_t preamble_setting = PREAMBLE_LENGTH_1024)
+ {
+ setDataRate(dw_ptr, rate_setting);
+ setPulseRepetitionFrequency(dw_ptr, prf_setting);
+ setPreambleLength(dw_ptr, preamble_setting);
+
+ // Setting for Noise Threshold Multiplier 1
+ dw_ptr->writeRegister8(DW1000_LDE_CTRL, 0x0806, 0x0c); // LDE_CFG1
+// dw_ptr->writeRegister8(DW1000_LDE_CTRL, 0x0806, 0x0d); // LDE_CFG1
+ // Setting for Noise Threshold Multiplier 2
+ if (prf_setting == PRF_16_MHz)
+ {
+ dw_ptr->writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x1607); // LDE_CFG2 for 16 MHz PRF
+ }
+ else
+ {
+ dw_ptr->writeRegister16(DW1000_LDE_CTRL, 0x1806, 0x0607); // LDE_CFG2 for 64 MHz PRF
+ }
+ }
+};
\ No newline at end of file
--- a/LED.cpp Thu Feb 13 00:57:06 2020 +0000
+++ b/LED.cpp Mon Feb 17 23:24:52 2020 +0000
@@ -4,6 +4,7 @@
// LED
//------------------------------------------------------------------------------
DigitalOut led1(PN_LED);
+DigitalOut led2(PN_LED_BLUE);
void LED1on(long milliseconds = 0) {
led1 = 0;
@@ -42,4 +43,42 @@
}
void LED1off() {
led1 = 1;
+}
+
+
+
+
+
+void LED2on(long milliseconds = 0) {
+ led2 = 0;
+ if (milliseconds > 0) {
+ ThisThread::sleep_for(milliseconds);
+ led2 = 1;
+ }
+}
+void LED2blink(int count = 2, long milliseconds = 100) {
+ for (int i = 0; i < (count*2); i++) {
+ led2 = !led2;
+ if (milliseconds > 0) {
+ ThisThread::sleep_for(milliseconds);
+ } else {
+ ThisThread::sleep_for(100); //default if 0 provided
+ }
+ }
+ led2 = 1;
+}
+void LED2errorCode(int pattern, int count) {
+ for (int i = 0; i < count; i++) {
+ for (int p = 0; p < pattern; p++) {
+ led2 = 0;
+ ThisThread::sleep_for(200);
+ led2 = 1;
+ ThisThread::sleep_for(300);
+ }
+ ThisThread::sleep_for(1000);
+ }
+ led2 = 1;
+}
+void LED2off() {
+ led2 = 1;
}
\ No newline at end of file
--- a/LED.h Thu Feb 13 00:57:06 2020 +0000 +++ b/LED.h Mon Feb 17 23:24:52 2020 +0000 @@ -4,10 +4,18 @@ #include "main.h" extern DigitalOut led1; +extern DigitalOut led2; + extern void LED1on(long milliseconds); extern void LED1blink(int count, long milliseconds); extern void LED1blinkRTC(int count); extern void LED1errorCode(int pattern, int count); extern void LED1off(void); +extern void LED2on(long milliseconds); +extern void LED2blink(int count, long milliseconds); +extern void LED2blinkRTC(int count); +extern void LED2errorCode(int pattern, int count); +extern void LED2off(void); + #endif \ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/Lis2dh12.lib Mon Feb 17 23:24:52 2020 +0000 @@ -0,0 +1,1 @@ +https://os.mbed.com/teams/Pathfindr/code/Lis2dh12/#9a41168aed47
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/MM2WayRanging.cpp Mon Feb 17 23:24:52 2020 +0000
@@ -0,0 +1,188 @@
+#include "MM2WayRanging.h"
+#include "NRFuart.h"
+
+
+MM2WayRanging::MM2WayRanging(DW1000& DW) : dw(DW) {
+ isBeacon = true;
+ overflow = false;
+ address = 0;
+
+ LocalTimer.start();
+ dw.startRX();
+}
+
+
+bool MM2WayRanging::waitForFrameRX(float time_before) {
+ bool frameReceived = false;
+ while(!frameReceived && (LocalTimer.read() < time_before + 0.02f)) {
+ frameReceived = dw.hasReceivedFrame();
+ }; // wait for succeeding or timeout
+ if (frameReceived) {
+ //debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "Frame Received\n");debug_exe();
+ callbackRX();
+ dw.clearReceivedFlag();
+ } else {
+ //debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "Receive Timeout\n");debug_exe();
+ }
+ return frameReceived;
+}
+
+
+bool MM2WayRanging::waitForFrameTX(float time_before) {
+ bool frameSent = false;
+ while(!frameSent && (LocalTimer.read() < time_before + 0.02f)) {
+ frameSent = dw.hasSentFrame();
+ }; // wait for succeeding or timeout
+ if (frameSent) {
+ //debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "Frame Sent\n");debug_exe();
+ callbackTX();
+ dw.clearSentFlag();
+ } else {
+ //debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "Send Timeout\n");debug_exe();
+ }
+ return frameSent;
+}
+
+
+
+void MM2WayRanging::callbackRX() {
+ dw.readRegister(DW1000_RX_BUFFER, 0, (uint8_t*)&receivedFrame, dw.getFramelength());
+
+ //MESSAGES ADDRESSED FOR ALL DETECTORS
+ if (receivedFrame.destination == 0) {
+ switch (receivedFrame.type) {
+ case BEACON_READY:
+ anchor_to_beacon_Send(receivedFrame.source);
+ //TODO - WE COULD ALSO TIME THIS FRAME AND THEN DIVIDE BY THREE TO GET MORE ACCURACY?
+ break;
+ default : break;
+ }
+ }
+
+ //MESSAGES ADDRESSED FOR ME
+ if (receivedFrame.destination == address)
+ switch (receivedFrame.type) {
+ case ANCHOR_TO_BEACON_PING:
+ RxTimestamp = dw.getRXTimestamp();
+ beacon_to_anchor_response_Send(receivedFrame.source, RxTimestamp);
+ break;
+ case BEACON_TO_ANCHOR_RESPONSE:
+ rangingRxTimestamp[receivedFrame.destination] = dw.getRXTimestamp();
+ //Calulate time/distance
+ rangingTOF[receivedFrame.source] = (rangingRxTimestamp[receivedFrame.source] - rangingTxTimestamp[receivedFrame.source]); //TODO need to remove ANSWER_DELAY_TIMEUNITS from this
+ rangingDistance[receivedFrame.source] = (rangingTOF[receivedFrame.source] * 300 * TIMEUNITS_TO_US / 4); //TODO should this be divide by 2?
+ debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "Distance(%d): %d\n",receivedFrame.source, rangingDistance[receivedFrame.source]);debug_exe();
+ break;
+ default : break;
+ }
+
+ //debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "Received From: %d\n",receivedFrame.destination);debug_exe();
+ dw.startRX();
+}
+
+
+
+void MM2WayRanging::callbackTX() {
+ //dw.readRegister(DW1000_TX_BUFFER, 0, (uint8_t*)&sentFrame, dw.getFramelength());
+ switch (rangingFrame.type) {
+ case BEACON_READY:
+ //No Need to do anything
+ break;
+ case ANCHOR_TO_BEACON_PING:
+ rangingTxTimestamp[rangingFrame.destination] = dw.getTXTimestamp();
+ break;
+ case BEACON_TO_ANCHOR_RESPONSE:
+ //No Need to do anything
+ break;
+ default: break;
+ }
+}
+
+
+
+bool MM2WayRanging::beacon_requestRanging() {
+ float time_before = LocalTimer.read();
+ beacon_ready_Send();
+ bool sendSuccess = waitForFrameTX(time_before);
+ if (sendSuccess) {
+ //WAIT FOR FIRST RANGING FROM AN ANCHOR - TIMEOUT AFTER NO RANGING FOR CERTAIN TIME
+ float lastRangingTime = LocalTimer.read();
+ while((LocalTimer.read() - lastRangingTime) < 0.02f) {
+ if (waitForFrameRX(lastRangingTime)) {
+ lastRangingTime = LocalTimer.read();
+ }
+ }
+ } else {
+ //Send Fail
+ }
+ //debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "Range End - %d\n",destination);debug_exe();
+}
+
+
+
+void MM2WayRanging::anchor_standbyToRange() {
+ float time_before = LocalTimer.read();
+ waitForFrameRX(time_before);
+}
+
+
+void MM2WayRanging::beacon_ready_Send() {
+ rangingFrame.source = address;
+ rangingFrame.destination = 0;
+ rangingFrame.type = BEACON_READY;
+ dw.sendFrame((uint8_t*)&rangingFrame, sizeof(rangingFrame));
+}
+
+void MM2WayRanging::anchor_to_beacon_Send(uint8_t destination) {
+ rangingFrame.source = address;
+ rangingFrame.destination = destination;
+ rangingFrame.type = ANCHOR_TO_BEACON_PING;
+ dw.sendFrame((uint8_t*)&rangingFrame, sizeof(rangingFrame));
+}
+
+void MM2WayRanging::beacon_to_anchor_response_Send(uint8_t destination, uint64_t rxTimestamp) {
+ rangingFrame.source = address;
+ rangingFrame.destination = destination;
+ rangingFrame.type = BEACON_TO_ANCHOR_RESPONSE;
+ if(rxTimestamp + ANSWER_DELAY_TIMEUNITS > MMRANGING_2POWER40) {
+ dw.sendDelayedFrame((uint8_t*)&rangingFrame, sizeof(rangingFrame), rxTimestamp + ANSWER_DELAY_TIMEUNITS - MMRANGING_2POWER40);
+ } else {
+ dw.sendDelayedFrame((uint8_t*)&rangingFrame, sizeof(rangingFrame), rxTimestamp + ANSWER_DELAY_TIMEUNITS);
+ }
+}
+
+
+
+
+
+
+
+
+
+
+
+
+/*
+void MM2WayRanging::correctReceiverTimestamps(uint8_t source){
+ if(receiverTimestamps[source][0] > receiverTimestamps[source][1]){
+ receiverTimestamps[source][1] += MMRANGING_2POWER40;
+ receiverTimestamps[source][2] += MMRANGING_2POWER40;
+ }
+ if(receiverTimestamps[source][1] > receiverTimestamps[source][2]){
+ receiverTimestamps[source][2] += MMRANGING_2POWER40;
+ }
+}
+
+void MM2WayRanging::correctSenderTimestamps(uint8_t source){
+ if (senderTimestamps[source][0] > senderTimestamps[source][1]) {
+ senderTimestamps[source][1] += MMRANGING_2POWER40;
+ senderTimestamps[source][2] += MMRANGING_2POWER40;
+ overflow = true;
+ } else if (senderTimestamps[source][1] > senderTimestamps[source][2]) {
+ senderTimestamps[source][2] += MMRANGING_2POWER40;
+ overflow = true;
+ } else {
+ overflow = false;
+ }
+}
+*/
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/MM2WayRanging.h Mon Feb 17 23:24:52 2020 +0000
@@ -0,0 +1,68 @@
+#ifndef MM2WAYRANGING_H
+#define MM2WAYRANGING_H
+
+#include "mbed.h"
+#include "DW1000.h"
+
+
+#define TIMEUNITS_TO_US (1/(128*499.2)) // conversion between the decawave timeunits (ca 15.65ps) to microseconds.
+#define US_TO_TIMEUNITS (128*499.2) // conversion between microseconds to the decawave timeunits (ca 15.65ps).
+#define MMRANGING_2POWER40 1099511627776 // decimal value of 2^40 to correct timeroverflow between timestamps
+
+//Predefined delay for the critical answers in the ranging algorithm
+//HAS TO BE BIGGER THAN THE PROCESSING TIME OF THE FRAME ON THE NODE
+#define ANSWER_DELAY_US 2500 //2500 works for 110kbps, 900 for 6.8Mbps
+#define ANSWER_DELAY_TIMEUNITS ANSWER_DELAY_US * (128*499.2)
+
+class MM2WayRanging {
+
+public:
+ MM2WayRanging(DW1000& DW);
+
+ bool beacon_requestRanging();
+ void anchor_standbyToRange();
+
+ bool isBeacon;
+ uint8_t address; // Identifies the nodes as source and destination in rangingframes
+ bool overflow; // TRUE if counter overflows while ranging
+
+private:
+ DW1000& dw;
+ Timer LocalTimer;
+
+ bool waitForFrameTX(float time_before);
+ bool waitForFrameRX(float time_before);
+ void callbackRX();
+ void callbackTX();
+
+ void beacon_ready_Send();
+ void anchor_to_beacon_Send(uint8_t destination);
+ void beacon_to_anchor_response_Send(uint8_t destination, uint64_t rxTimestamp);
+
+ //void correctReceiverTimestamps(uint8_t source);
+ //void correctSenderTimestamps(uint8_t source);
+
+ enum FrameType{
+ BEACON_READY=1,
+ ANCHOR_TO_BEACON_PING,
+ BEACON_TO_ANCHOR_RESPONSE
+ };
+
+ //the packed attribute makes sure the types only use their respective size in memory (8 bit for uint8_t), otherwise they would always use 32 bit
+ //IT IS A GCC SPECIFIC DIRECTIVE
+ struct __attribute__((packed, aligned(1))) RangingFrame {
+ uint8_t source;
+ uint8_t destination;
+ uint8_t type;
+ };
+
+ RangingFrame rangingFrame; // buffer in class for sending a frame (not made locally because then we can recall in the interrupt what was sent)
+ RangingFrame receivedFrame;
+
+ uint64_t RxTimestamp;
+ uint64_t rangingTxTimestamp[5];
+ uint64_t rangingRxTimestamp[5];
+ uint64_t rangingTOF[5];
+ float rangingDistance[5];
+};
+#endif
\ No newline at end of file
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/aconno_I2C.lib Mon Feb 17 23:24:52 2020 +0000 @@ -0,0 +1,1 @@ +https://os.mbed.com/users/jurica238814/code/aconno_I2C/#b2f0c302ba6d
--- a/board.h Thu Feb 13 00:57:06 2020 +0000 +++ b/board.h Mon Feb 17 23:24:52 2020 +0000 @@ -9,11 +9,9 @@ #define PN_LED P0_30 // Green #define PN_LED_BLUE P0_31 // Blue -#define PN_SPI_MOSI P0_23 -#define PN_SPI_MISO P0_19 -#define PN_SPI_CLK P0_24 -#define PN_SPI_CS0 P0_22 -#define PN_SPI_CS1 P0_17 +#define PN_SPI_MOSI P0_20 +#define PN_SPI_MISO P0_18 +#define PN_SPI_CLK P0_16 #define PN_UART_RX P0_11 #define PN_UART_TX P0_5 #define PN_UART_CTS P0_30 @@ -24,6 +22,13 @@ #define PN_I2C_SDA P0_29 #define PN_I2C_SCL P0_28 +#define DW1000_RST P0_24 +#define DW1000_IRQ P0_19 +#define DW1000_RDY P0_25 +#define DW1000_CS P0_17 + + + //MEMORY FOR DISK //#define BD_PAGE_SIZE 4096
--- a/main.cpp Thu Feb 13 00:57:06 2020 +0000
+++ b/main.cpp Mon Feb 17 23:24:52 2020 +0000
@@ -1,4 +1,4 @@
- #include "main.h"
+#include "main.h"
// MUST USE MBED 5.10.4 2fd0c5cfbd
/*
@@ -26,12 +26,16 @@
float RET_temperature = 0.0;
float RET_humidity = 0.0;
bool RET_motionState = false;
+int8_t RET_accX = 0;
+int8_t RET_accY = 0;
+int8_t RET_accZ = 0;
+time_t RET_motionLastDetected = 0;
+time_t RET_InMotionSeconds = 0;
+time_t RET_NoMotionSeconds = 0;
bool RET_impactState = false;
//STATE
bool RET_busy = false;
-uint8_t RET_state = STATE_SETUP;
-uint8_t RET_state_prev = RET_state;
bool RET_asleep = false;
bool RET_coldBoot = true;
@@ -73,9 +77,14 @@
time_t EVENT_settingsScan_time = 0;
bool EVENT_uwbScan = false;
-time_t EVENT_uwbScan_interval = 60;
+time_t EVENT_uwbScan_interval = 60;
time_t EVENT_uwbScan_time = 0;
+bool EVENT_resetACCInt = false;
+time_t EVENT_resetACCInt_interval = DEFAULT_INTERVAL_RESETACCINT;
+time_t EVENT_resetACCInt_time = 0;
+
+
//BLE
uint16_t RET_setting_beacon_interval_ms = DEFAULT_BEACON_INTERVAL_MS;
uint16_t RET_setting_beacon_interval_ms_active = DEFAULT_BEACON_INTERVAL_MS;
@@ -108,6 +117,8 @@
//GPIO
//------------------------------------------------------------------------------
InterruptIn button(PN_IN_BUTTON);
+InterruptIn accInt1(PN_ACC_INT1);
+//InterruptIn DW_irq(DW1000_IRQ);
//------------------------------------------------------------------------------
//PERIPHERALS
@@ -117,6 +128,10 @@
LowPowerTicker RTCticker;
LowPowerTimer LPtimer;
+I2C i2c(PN_I2C_SDA,PN_I2C_SCL);
+SPI spi(PN_SPI_MOSI,PN_SPI_MISO,PN_SPI_CLK);
+Lis2dh12 acc(&i2c, 0x32);
+
//------------------------------------------------------------------------------
//SEMAPHORES
//------------------------------------------------------------------------------
@@ -200,7 +215,7 @@
//------------------------------------------------------------------------------
-// USER BUTTON HANDLING
+// INTERUPTS
//------------------------------------------------------------------------------
void buttonPress() {
RET_buttonPressTime = LPtimer.read_ms();
@@ -220,7 +235,10 @@
RET_buttonReleaseTime_prev = RET_buttonReleaseTime;
}
-
+void accInt1ISR() {
+ //led2 = !led2;
+ RET_motionLastDetected = RET_RTCunixtime;
+}
//------------------------------------------------------------------------------
// RTC TICKER
@@ -253,9 +271,25 @@
if (EVENT_uwbScan_time > 0 && RET_RTCunixtime >= EVENT_uwbScan_time) {
RET_haveEventsToRun = true; EVENT_uwbScan = true;
}
+ if (EVENT_resetACCInt_time > 0 && RET_RTCunixtime >= EVENT_resetACCInt_time) {
+ RET_haveEventsToRun = true; EVENT_resetACCInt = true;
+ }
}
- if (RET_haveEventsToRun) {
+ //CHECK FOR MOTION OPT
+ //Had motion in last 5 seconds?
+ if (RET_motionLastDetected > 0 && (RET_RTCunixtime-RET_motionLastDetected) < 5) {
+ EVENT_motionClear_time = (RET_RTCunixtime + EVENT_motionClear_interval);
+ if (RET_motionState == 0) {
+ RET_motionState = 1;
+ RET_BLEpacketUpdate = true;
+ RET_haveEventsToRun = true;
+ }
+ }
+ led1 = !RET_motionState;
+
+ //WAKE UP MAIN LOOP AND RUN ANY EVENTS
+ if (RET_haveEventsToRun && RET_asleep) {
mainthread.release();
}
}
@@ -430,7 +464,7 @@
// BLE SETTINGS SCAN
//------------------------------------------------------------------------------
void settingsScan() {
- LED1on(0);
+ //LED1on(0);
bleStopAdvertising();
LowPowerTimer bleScan_t;
bleScan_t.start();
@@ -452,17 +486,62 @@
}
bleScan_t.stop();
myble.gap().stopScan();
- LED1off();
+ //LED1off();
+}
+
+//------------------------------------------------------------------------------
+// UWB SCAN
+//------------------------------------------------------------------------------
+struct __attribute__((packed, aligned(1))) DistancesFrame {
+ uint8_t source;
+ uint8_t destination;
+ uint8_t type;
+ float dist[4];
+ };
+
+DW1000 dw(PN_SPI_MOSI, PN_SPI_MISO, PN_SPI_CLK, DW1000_CS, DW1000_IRQ, DW1000_RST); // Device driver instanceSPI pins: (MOSI, MISO, SCLK, CS, IRQ)
+//DW1000 dw(&spi,DW_irq,DW1000_CS,DW1000_RST);
+MM2WayRanging node(dw);
+
+void uwbScan() {
+
+}
+
+//------------------------------------------------------------------------------
+// ACC
+//------------------------------------------------------------------------------
+void acc_configForMotionInt() {
+ acc.setMode(LOW_POWER);
+ acc.enableAxes(X_axis);
+ acc.enableAxes(Y_axis);
+ acc.enableAxes(Z_axis);
+ acc.setODR(ODR_1Hz);
+ acc.setScale(_8g);
+ acc.int1Setup(0b01000000); // IntActivity 1 driven to INT1 pad
+ //acc.setCTRL_REG2(0b11001011); //High pass filter active
+ acc.setCTRL_REG2(0b00000000); //High pass filter off
+ acc.int1Latch(0b00000000); //Dont latch
+ acc.int1Threshold(7);
+ acc.int1Duration(0x00);
+ acc.int1Config(0b01111111); // INT2_CFG Enable XHigh, YHigh and ZHigh, triggers INT1 on any motion
+ acc.clearIntFlag(); //reset int1
+}
+
+void acc_updateOrientation() {
+ //Divide by 16 to get range of +- 16 on each axis
+ RET_accX = (acc.readXAxis() / 16);
+ RET_accY = (acc.readYAxis() / 16);
+ RET_accZ = (acc.readZAxis() / 16);
}
//------------------------------------------------------------------------------
// STATE ENGINE
//------------------------------------------------------------------------------
void mainStateEngine() {
- if(debug) {debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "MainStateEngine");debug_exe();}
+ if(RET_debug) {debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "MainStateEngine");debug_exe();}
if (EVENT_buttonPress) {
- if(debug) {debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "EVENT_ButtonPress");debug_exe();}
+ if(RET_debug) {debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "EVENT_ButtonPress");debug_exe();}
EVENT_buttonClear_time = (RET_RTCunixtime + EVENT_buttonClear_interval);
RET_setting_beacon_interval_ms_active = DEFAULT_BEACON_INTERVAL_FAST_MS;
RET_BLEpacketUpdate = true;
@@ -470,60 +549,68 @@
}
if (EVENT_motionClear) {
- if(debug) {debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "EVENT_MotionClear");debug_exe();}
+ if(RET_debug) {debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "EVENT_MotionClear");debug_exe();}
EVENT_motionClear_time = 0;
+ EVENT_motionClear = false;
RET_motionState = false;
RET_impactState = false;
+ acc_updateOrientation(); //update orientation data
RET_BLEpacketUpdate = true;
- EVENT_motionClear = false;
}
if (EVENT_buttonClear) {
- if(debug) {debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "EVENT_ButtonClear");debug_exe();}
+ if(RET_debug) {debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "EVENT_ButtonClear");debug_exe();}
EVENT_buttonClear_time = 0;
+ EVENT_buttonClear = false;
RET_buttonPressed = false;
RET_buttonPressCount = 0;
RET_setting_beacon_interval_ms_active = RET_setting_beacon_interval_ms; //reset back to normal broadcast rate
RET_BLEpacketUpdate = true;
- EVENT_buttonClear = false;
}
if (EVENT_battery) {
- if(debug) {debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "EVENT_Battery");debug_exe();}
+ if(RET_debug) {debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "EVENT_Battery");debug_exe();}
EVENT_battery_time = (RET_RTCunixtime + EVENT_battery_interval);
+ EVENT_battery = false;
updateBatteryV();
RET_BLEpacketUpdate = true;
- EVENT_battery = false;
}
if (EVENT_temperature) {
- if(debug) {debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "EVENT_Temperature");debug_exe();}
+ if(RET_debug) {debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "EVENT_Temperature");debug_exe();}
EVENT_temperature_time = (RET_RTCunixtime + EVENT_temperature_interval);
- RET_BLEpacketUpdate = true;
EVENT_temperature = false;
//get temperature TODO - only update ble if different to last
+ RET_BLEpacketUpdate = true;
}
if (EVENT_humidity) {
- if(debug) {debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "EVENT_Humidity");debug_exe();}
+ if(RET_debug) {debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "EVENT_Humidity");debug_exe();}
EVENT_humidity_time = (RET_RTCunixtime + EVENT_humidity_interval);
- RET_BLEpacketUpdate = true;
EVENT_humidity = false;
//get humidity TODO - only update ble if different to last
+ RET_BLEpacketUpdate = true;
}
if (EVENT_settingsScan) {
- if(debug) {debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "EVENT_SettingsScan");debug_exe();}
+ if(RET_debug) {debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "EVENT_SettingsScan");debug_exe();}
EVENT_settingsScan_time = (RET_RTCunixtime + EVENT_settingsScan_interval);
EVENT_settingsScan = false;
settingsScan();
}
if (EVENT_uwbScan) {
- if(debug) {debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "EVENT_uwbScan");debug_exe();}
+ if(RET_debug) {debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "EVENT_uwbScan");debug_exe();}
EVENT_uwbScan_time = (RET_RTCunixtime + EVENT_uwbScan_interval);
EVENT_uwbScan = false;
}
+
+ /*if (EVENT_resetACCInt) {
+ if(RET_debug) {debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "EVENT_resetACCInt1");debug_exe();}
+ EVENT_resetACCInt_time = 0;
+ EVENT_resetACCInt = false;
+ acc.clearIntFlag();
+ }*/
//BLE START OR UPDATE
if (RET_bleBroadcasting == false) {
@@ -535,13 +622,15 @@
}
if (RET_BLEpacketUpdate == true) {
if(RET_debug) {debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer), "BLE Update only");debug_exe();}
- bleUpdateAndAdvertise();
- }
+ bleUpdateAndAdvertise(); //this function also sets RET_BLEpacketUpdate = false
+ }
//END
RET_haveEventsToRun = false;
}
+
+
//------------------------------------------------------------------------------
// MAIN
//------------------------------------------------------------------------------
@@ -554,13 +643,32 @@
LPtimer.start();
button.fall(&buttonPress);
button.rise(&buttonRelease);
+ accInt1.rise(&accInt1ISR);
//read_app_data_from_flash(&app_data);
+ acc_configForMotionInt();
firstRun();
+ debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer),"Ready\n");debug_exe();
//MAIN LOOP
while(true) {
RET_asleep = false;
- LED1on(20);
+ //LED2on(30);
+
+
+ while(1) {
+ debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer),"UWB SCAN START\n");debug_exe();
+ uwbScan();
+ debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer),"UWB SCAN END\n");debug_exe();
+ nrf_configureForSleep();
+ ThisThread::sleep_for(1000);
+ }
+
+
+ while(1) {
+ acc_updateOrientation();
+ debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer),"X:%d Y:%d D:%d\n",RET_accX,RET_accY,RET_accZ);debug_exe();
+ ThisThread::sleep_for(20);
+ }
//STATE ENGINE
mainStateEngine();
@@ -573,6 +681,7 @@
//DEBUGGING OFF TIMER
if(RET_debug){
+ debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer),"TIME:%d\n",RET_RTCunixtime);debug_exe();
if (RET_RTCunixtime > RET_debug_offat) {
debug_prep();snprintf(GLOBAL_debug_buffer, sizeof(GLOBAL_debug_buffer),"DEBUGGING OFF\n");debug_exe();
RET_debug = false;
@@ -580,13 +689,13 @@
}
//PRE-SLEEP ACTIONS
- //if (GLOBAL_needToConfigureLis3dh) { lis3dh_configureForSleep(RET_setting_motion_g,RET_setting_impact_g); }
+ acc_configForMotionInt();
watchdogKick();
//SLEEP
nrf_configureForSleep();
NRFuart_uninit();
RET_asleep = true;
- LED1off();
+ //LED1off();
mainthread.wait(DEFAULT_SLEEP_FRAME);
}
}
\ No newline at end of file
--- a/main.h Thu Feb 13 00:57:06 2020 +0000 +++ b/main.h Mon Feb 17 23:24:52 2020 +0000 @@ -24,7 +24,7 @@ #define USE_NRF_TEMP_SENSOR false //DEFAULT VELUES -#define DEFAULT_SLEEP_FRAME 120000 +#define DEFAULT_SLEEP_FRAME 360000 // 6 mins #define DEFAULT_MOTION_G 7 #define DEFAULT_MOTION_START_SECONDS 120 #define DEFAULT_MOTION_STOP_SECONDS 120 @@ -41,16 +41,15 @@ #define TENDAYSINSECONDS 864000 //DEFAULT EVENT TIMES IN SECONDS -#define DEFAULT_INTERVAL_MOTIONCLEAR 120 +#define DEFAULT_INTERVAL_MOTIONCLEAR 60 +#define DEFAULT_INTERVAL_RESETACCINT 10 #define DEFAULT_INTERVAL_BUTTONCLEAR 20 #define DEFAULT_INTERVAL_BATTERY ONEDAYINSECONDS #define DEFAULT_INTERVAL_TEMPERATURE 60 #define DEFAULT_INTERVAL_HUMIDITY 120 -#define DEFAULT_INTERVAL_SETTINGSSCAN 60 - +#define DEFAULT_INTERVAL_SETTINGSSCAN 0 //DEFINES -#define ACTIVITY_BUFFERSIZE 100 #define DEBUG_BUFFERSIZE 200 //------------------------------------------------------------------------------ @@ -66,13 +65,16 @@ //------------------------------------------------------------------------------ #include "WatchdogTimer.h" #include "acd_nrf52_saadc.h" +#include "DW1000.h" +#include "MM2WayRanging.h" +#include "Lis2dh12.h" +#include "Lis2dh12_regs.h" //------------------------------------------------------------------------------ //Application headers //------------------------------------------------------------------------------ #include "NRFuart.h" #include "app_data.h" -#include "states.h" #include "LED.h" //BLE SERVICE IDS @@ -91,10 +93,8 @@ extern bool GLOBAL_accel_healthy; extern bool GLOBAL_requireSoftReset; -extern bool GLOBAL_motionFlagTriggered; extern bool GLOBAL_debugLED; extern bool GLOBAL_needToConfigureLis3dh; -extern bool GLOBAL_LEDSequenceinProgress; extern time_t GLOBAL_RTCunixtime; extern char GLOBAL_debug_buffer[DEBUG_BUFFERSIZE]; //FUNCS
--- a/states.h Thu Feb 13 00:57:06 2020 +0000 +++ /dev/null Thu Jan 01 00:00:00 1970 +0000 @@ -1,7 +0,0 @@ -#define STATE_SETUP 0 -#define STATE_NORMAL 1 -#define STATE_LAUNCH 2 -#define STATE_ALARM 4 -#define STATE_BUTTONPRESS1 81 -#define STATE_BUTTONPRESS3 82 -#define STATE_SCORCHEDEARTH 90 \ No newline at end of file