an old afLib which supports both SPI and UART
afLib.cpp
- Committer:
- Rhyme
- Date:
- 2018-03-20
- Revision:
- 0:6f371c791202
- Child:
- 1:112741fe45d1
File content as of revision 0:6f371c791202:
/**
* Copyright 2015 Afero, Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "mbed.h"
#define Stream Serial
#include "afLib.h"
#include "af_queue.h"
/**
* Define this to debug your selected transport (ie SPI or UART).
* This will cause a println each time an interrupt or ready byte is received from the ASR.
* You will also get states printed whenever a SYNC transaction is performed by the afLib.
*/
#define DEBUG_TRANSPORT 0
/**
* These are required to be able to recognize the MCU trying to reboot the ASR by setting the command
* attribute. We used local defines with the aflib prefix to make sure they are always defined and don't
* clash with anything the app is using.
*/
#define AFLIB_SYSTEM_COMMAND_ATTR_ID (65012)
#define AFLIB_SYSTEM_COMMAND_REBOOT (1)
/**
* Prevent the MCU from spamming us with too many setAttribute requests.
* We do this by waiting a small amount of time in between transactions.
* This prevents sync retries and allows the module to get it's work done.
*/
#define MIN_TIME_BETWEEN_UPDATES_MILLIS (50)
#define IS_MCU_ATTR(x) (x >= 0 && x < 1024)
static iafLib *_iaflib = NULL;
#define MAX_SYNC_RETRIES 10
static long lastSync = 0;
static int syncRetries = 0;
static long lastComplete = 0;
AF_QUEUE_DECLARE(s_request_queue, sizeof(request_t), REQUEST_QUEUE_SIZE);
/**
* Required for the Linux version of afLib.
*/
#ifndef ARDUINO
#if 0
#include <sys/time.h>
struct timeval start;
long millis() {
gettimeofday(&start, NULL);
return start.tv_sec;
}
#endif /* for 0 */
#endif /* ARDUINO */
/**
* These methods are required for the Arduino version of afLib.
* They are no-ops on linux.
*/
void noInterrupts()
{
__disable_irq() ;
}
void interrupts()
{
__enable_irq() ;
}
/* for mbed implementation */
Timer *aflib_timer = 0 ;
long millis(void)
{
if (aflib_timer == 0) {
aflib_timer = new Timer() ;
aflib_timer->start() ;
}
return(aflib_timer->read_ms()) ;
}
/**
* getRequestId
* by Motoo Tanaka on 20-Mar-2018
*/
int afLib::getRequestId(void)
{
return( _requestId ) ;
}
/**
* create
*
* The public constructor for the afLib. This allows us to create the afLib object once and hold a reference to it.
*/
iafLib *iafLib::create(PinName mcuInterrupt, isr isrWrapper,
AttrSetHandler attrSet, AttrNotifyHandler attrNotify, Stream *theLog , afTransport *theTransport)
{
if (_iaflib == NULL) {
_iaflib = new afLib( mcuInterrupt, isrWrapper, attrSet, attrNotify, theLog, theTransport);
}
return _iaflib;
}
/**
* create
*
* The public constructor for the afLib. This allows us to create the afLib object once and hold a reference to it.
*/
iafLib *iafLib::create(AttrSetHandler attrSet, AttrNotifyHandler attrNotify, Stream *theLog, afTransport *theTransport)
{
if (_iaflib == NULL) {
_iaflib = new afLib(PinName(-1), NULL, attrSet, attrNotify, theLog, theTransport);
}
return _iaflib;
}
/**
* afLib
*
* The private constructor for the afLib. This one actually initializes the afLib and prepares it for use.
*/
afLib::afLib(PinName mcuInterrupt, isr isrWrapper,
AttrSetHandler attrSet, AttrNotifyHandler attrNotify, Stream *theLog, afTransport *theTransport)
{
queueInit();
_theLog= theLog;
_theTransport= theTransport;
_request.p_value = NULL;
//_spiSettings = SPISettings(1000000, LSBFIRST, SPI_MODE0);
_interrupts_pending = 0;
_state = STATE_IDLE;
_writeCmd = NULL;
_writeCmdOffset = 0;
_outstandingSetGetAttrId = 0;
_readCmd = NULL;
_readCmdOffset = 0;
_readBufferLen = 0;
_txStatus = new StatusCommand(_theLog);
_rxStatus = new StatusCommand(_theLog);
_attrSetHandler = attrSet;
_attrNotifyHandler = attrNotify;
#ifdef ARDUINO
if (mcuInterrupt != -1) {
pinMode(mcuInterrupt, INPUT);
attachInterrupt(mcuInterrupt, isrWrapper, FALLING);
}
#endif
/* 20-Mar-2018 by Motoo Tanaka for mbed implementation */
if (isrWrapper != 0) {
fco = new InterruptIn(mcuInterrupt) ;
fco->fall(isrWrapper) ;
}
_interrupts_pending = 0;
}
/**
* loop
*
* This is how the afLib gets time to run its state machine. This method should be called periodically from the
* loop() function of the Arduino sketch.
* This function pulls pending attribute operations from the queue. It takes approximately 4 calls to loop() to
* complete one attribute operation.
*/
void afLib::loop(void) {
// For UART, we need to look for a magic character on the line as our interrupt.
// We call this method to handle that. For other interfaces, the interrupt pin is used and this method does nothing.
_theTransport->checkForInterrupt(&_interrupts_pending, isIdle());
if (isIdle() && (queueGet(&_request.messageType, &_request.requestId, &_request.attrId, &_request.valueLen,
&_request.p_value, &_request.status, &_request.reason) == afSUCCESS)) {
switch (_request.messageType) {
case MSG_TYPE_GET:
doGetAttribute(_request.requestId, _request.attrId);
break;
case MSG_TYPE_SET:
doSetAttribute(_request.requestId, _request.attrId, _request.valueLen, _request.p_value);
break;
case MSG_TYPE_UPDATE:
doUpdateAttribute(_request.requestId, _request.attrId, _request.valueLen, _request.p_value, _request.status, _request.reason);
break;
default:
_theLog->printf("loop: request type!\n");
}
}
if (_request.p_value != NULL) {
delete (_request.p_value);
_request.p_value = NULL;
}
runStateMachine();
}
/**
* updateIntsPending
*
* Interrupt-safe method for updating the interrupt count. This is called to increment and decrement the interrupt count
* as interrupts are received and handled.
*/
void afLib::updateIntsPending(int amount) {
noInterrupts();
_interrupts_pending += amount;
interrupts();
}
/**
* sendCommand
*
* This increments the interrupt count to kick off the state machine in the next call to loop().
*/
void afLib::sendCommand(void) {
noInterrupts();
if (_interrupts_pending == 0 && _state == STATE_IDLE) {
updateIntsPending(1);
}
interrupts();
}
/**
* getAttribute
*
* The public getAttribute method. This method queues the operation and returns immediately. Applications must call
* loop() for the operation to complete.
*/
int afLib::getAttribute(const uint16_t attrId) {
_requestId++;
uint8_t dummy; // This value isn't actually used.
return queuePut(MSG_TYPE_GET, _requestId, attrId, 0, &dummy, 0, 0);
}
/**
* The many moods of setAttribute
*
* These are the public versions of the setAttribute method.
* These methods queue the operation and return immediately. Applications must call loop() for the operation to complete.
*/
int afLib::setAttributeBool(const uint16_t attrId, const bool value) {
_requestId++;
uint8_t val = value ? 1 : 0;
return queuePut(IS_MCU_ATTR(attrId) ? MSG_TYPE_UPDATE : MSG_TYPE_SET, _requestId, attrId, sizeof(val),
(uint8_t *)&val, UPDATE_STATE_UPDATED, UPDATE_REASON_LOCAL_OR_MCU_UPDATE);
}
int afLib::setAttribute8(const uint16_t attrId, const int8_t value) {
_requestId++;
return queuePut(IS_MCU_ATTR(attrId) ? MSG_TYPE_UPDATE : MSG_TYPE_SET, _requestId, attrId, sizeof(value),
(uint8_t *)&value, UPDATE_STATE_UPDATED, UPDATE_REASON_LOCAL_OR_MCU_UPDATE);
}
int afLib::setAttribute16(const uint16_t attrId, const int16_t value) {
_requestId++;
return queuePut(IS_MCU_ATTR(attrId) ? MSG_TYPE_UPDATE : MSG_TYPE_SET, _requestId, attrId, sizeof(value),
(uint8_t *) &value, UPDATE_STATE_UPDATED, UPDATE_REASON_LOCAL_OR_MCU_UPDATE);
}
int afLib::setAttribute32(const uint16_t attrId, const int32_t value) {
_requestId++;
return queuePut(IS_MCU_ATTR(attrId) ? MSG_TYPE_UPDATE : MSG_TYPE_SET, _requestId, attrId, sizeof(value),
(uint8_t *) &value, UPDATE_STATE_UPDATED, UPDATE_REASON_LOCAL_OR_MCU_UPDATE);
}
int afLib::setAttribute64(const uint16_t attrId, const int64_t value) {
_requestId++;
return queuePut(IS_MCU_ATTR(attrId) ? MSG_TYPE_UPDATE : MSG_TYPE_SET, _requestId, attrId, sizeof(value),
(uint8_t *) &value, UPDATE_STATE_UPDATED, UPDATE_REASON_LOCAL_OR_MCU_UPDATE);
}
int afLib::setAttributeStr(const uint16_t attrId, const char *value) {
_requestId++;
return queuePut(IS_MCU_ATTR(attrId) ? MSG_TYPE_UPDATE : MSG_TYPE_SET, _requestId, attrId, strlen(value),
(uint8_t *) value, UPDATE_STATE_UPDATED, UPDATE_REASON_LOCAL_OR_MCU_UPDATE);
}
int afLib::setAttributeCStr(const uint16_t attrId, const uint16_t valueLen, const char *value) {
if (valueLen > MAX_ATTRIBUTE_SIZE) {
return afERROR_INVALID_PARAM;
}
if (value == NULL) {
return afERROR_INVALID_PARAM;
}
_requestId++;
return queuePut(IS_MCU_ATTR(attrId) ? MSG_TYPE_UPDATE : MSG_TYPE_SET, _requestId, attrId, valueLen,
(const uint8_t *) value, UPDATE_STATE_UPDATED, UPDATE_REASON_LOCAL_OR_MCU_UPDATE);
}
int afLib::setAttributeBytes(const uint16_t attrId, const uint16_t valueLen, const uint8_t *value) {
if (valueLen > MAX_ATTRIBUTE_SIZE) {
return afERROR_INVALID_PARAM;
}
if (value == NULL) {
return afERROR_INVALID_PARAM;
}
_requestId++;
return queuePut(IS_MCU_ATTR(attrId) ? MSG_TYPE_UPDATE : MSG_TYPE_SET, _requestId, attrId, valueLen, value, UPDATE_STATE_UPDATED, UPDATE_REASON_LOCAL_OR_MCU_UPDATE);
}
int afLib::setAttributeComplete(uint8_t requestId, const uint16_t attrId, const uint16_t valueLen, const uint8_t *value, uint8_t status, uint8_t reason) {
if (valueLen > MAX_ATTRIBUTE_SIZE) {
return afERROR_INVALID_PARAM;
}
if (value == NULL) {
return afERROR_INVALID_PARAM;
}
return queuePut(MSG_TYPE_UPDATE, requestId, attrId, valueLen, value, status, reason);
}
/**
* doGetAttribute
*
* The private version of getAttribute. This version actually calls sendCommand() to kick off the state machine and
* execute the operation.
*/
int afLib::doGetAttribute(uint8_t requestId, uint16_t attrId) {
if (_interrupts_pending > 0 || _writeCmd != NULL) {
return afERROR_BUSY;
}
_writeCmd = new Command(_theLog,requestId, MSG_TYPE_GET, attrId);
if (!_writeCmd->isValid()) {
_theLog->printf("getAttribute invalid command:");
_writeCmd->dumpBytes();
_writeCmd->dump();
delete (_writeCmd);
_writeCmd = NULL;
return afERROR_INVALID_COMMAND;
}
_outstandingSetGetAttrId = attrId;
// Start the transmission.
sendCommand();
return afSUCCESS;
}
/**
* doSetAttribute
*
* The private version of setAttribute. This version actually calls sendCommand() to kick off the state machine and
* execute the operation.
*/
int afLib::doSetAttribute(uint8_t requestId, uint16_t attrId, uint16_t valueLen, uint8_t *value) {
if (_interrupts_pending > 0 || _writeCmd != NULL) {
return afERROR_BUSY;
}
_writeCmd = new Command(_theLog,requestId, MSG_TYPE_SET, attrId, valueLen, value);
if (!_writeCmd->isValid()) {
_theLog->printf("setAttributeComplete invalid command:");
_writeCmd->dumpBytes();
_writeCmd->dump();
delete (_writeCmd);
_writeCmd = NULL;
return afERROR_INVALID_COMMAND;
}
/**
* Recognize when the MCU is trying to reboot the ASR. When this is the case, the ASR will reboot before
* the SPI transaction completes and the _outstandingSetGetAttrId will be left set. Instead, just don't
* set it for this case.
*/
if (attrId != AFLIB_SYSTEM_COMMAND_ATTR_ID || *value != AFLIB_SYSTEM_COMMAND_REBOOT) {
_outstandingSetGetAttrId = attrId;
}
// Start the transmission.
sendCommand();
return afSUCCESS;
}
/**
* doUpdateAttribute
*
* setAttribute calls on MCU attributes turn into updateAttribute calls. See documentation on the SPI protocol for
* more information. This method calls sendCommand() to kick off the state machine and execute the operation.
*/
int afLib::doUpdateAttribute(uint8_t requestId, uint16_t attrId, uint16_t valueLen, uint8_t *value, uint8_t status, uint8_t reason) {
if (_interrupts_pending > 0 || _writeCmd != NULL) {
return afERROR_BUSY;
}
_writeCmd = new Command(_theLog, requestId, MSG_TYPE_UPDATE, attrId, status, reason, valueLen, value);
if (!_writeCmd->isValid()) {
_theLog->printf("updateAttribute invalid command:");
_writeCmd->dumpBytes();
_writeCmd->dump();
delete (_writeCmd);
return afERROR_INVALID_COMMAND;
}
// Start the transmission.
sendCommand();
return afSUCCESS;
}
/**
* parseCommand
*
* A debug method for parsing a string into a command. This is not required for library operation and is only supplied
* as an example of how to execute attribute operations from a command line interface.
*/
#ifdef ATTRIBUTE_CLI
int afLib::parseCommand(const char *cmd) {
if (_interrupts_pending > 0 || _writeCmd != NULL) {
_theLog->print("Busy: ");
_theLog->print(_interrupts_pending);
_theLog->print(", ");
_theLog->println(_writeCmd != NULL);
return afERROR_BUSY;
}
int reqId = _requestId++;
_writeCmd = new Command(_theLog,reqId, cmd);
if (!_writeCmd->isValid()) {
_theLog->print("BAD: ");
_theLog->println(cmd);
_writeCmd->dumpBytes();
_writeCmd->dump();
delete (_writeCmd);
_writeCmd = NULL;
return afERROR_INVALID_COMMAND;
}
// Start the transmission.
sendCommand();
return afSUCCESS;
}
#endif
/**
* runStateMachine
*
* The state machine for afLib. This state machine is responsible for implementing the KSP SPI protocol and executing
* attribute operations.
* This method is run:
* 1. In response to receiving an interrupt from the ASR-1.
* 2. When an attribute operation is pulled out of the queue and executed.
*/
void afLib::runStateMachine(void) {
if (_interrupts_pending > 0) {
//_theLog->printf("_interrupts_pending: %d\n",_interrupts_pending );
switch (_state) {
case STATE_IDLE:
onStateIdle();
return;
case STATE_STATUS_SYNC:
onStateSync();
break;
case STATE_STATUS_ACK:
onStateAck();
break;
case STATE_SEND_BYTES:
onStateSendBytes();
break;
case STATE_RECV_BYTES:
onStateRecvBytes();
break;
case STATE_CMD_COMPLETE:
onStateCmdComplete();
break;
}
updateIntsPending(-1);
} else {
if (syncRetries > 0 && syncRetries < MAX_SYNC_RETRIES && millis() - lastSync > 1000) {
_theLog->printf("Sync Retry\n");
updateIntsPending(1);
} else if (syncRetries >= MAX_SYNC_RETRIES) {
_theLog->printf("No response from ASR - does profile have MCU enabled?\n");
syncRetries = 0;
_state = STATE_IDLE;
}
}
}
/**
* onStateIdle
*
* If there is a command to be written, update the bytes to send. Otherwise we're sending a zero-sync message.
* Either way advance the state to send a sync message.
*/
void afLib::onStateIdle(void) {
if (_writeCmd != NULL) {
// Include 2 bytes for length
_bytesToSend = _writeCmd->getSize() + 2;
} else {
_bytesToSend = 0;
}
_state = STATE_STATUS_SYNC;
printState(_state);
}
/**
* onStateSync
*
* Write a sync message over SPI to let the ASR-1 know that we want to send some data.
* Check for a "collision" which occurs if the ASR-1 is trying to send us data at the same time.
*/
void afLib::onStateSync(void) {
int result;
_txStatus->setAck(false);
_txStatus->setBytesToSend(_bytesToSend);
_txStatus->setBytesToRecv(0);
result = _theTransport->exchangeStatus(_txStatus, _rxStatus);
if (result == afSUCCESS && _rxStatus->isValid() && inSync(_txStatus, _rxStatus)) {
syncRetries = 0; // Flag that sync completed.
_state = STATE_STATUS_ACK;
if (_txStatus->getBytesToSend() == 0 && _rxStatus->getBytesToRecv() > 0) {
_bytesToRecv = _rxStatus->getBytesToRecv();
}
} else {
// Try resending the preamble
_state = STATE_STATUS_SYNC;
lastSync = millis();
syncRetries++;
//_txStatus->dumpBytes();
//_rxStatus->dumpBytes();
}
printState(_state);
}
/**
* onStateAck
*
* Acknowledge the previous sync message and advance the state.
* If there are bytes to send, advance to send bytes state.
* If there are bytes to receive, advance to receive bytes state.
* Otherwise it was a zero-sync so advance to command complete.
*/
void afLib::onStateAck(void) {
int result;
_txStatus->setAck(true);
_txStatus->setBytesToRecv(_rxStatus->getBytesToRecv());
_bytesToRecv = _rxStatus->getBytesToRecv();
result = _theTransport->writeStatus(_txStatus);
if (result != afSUCCESS) {
_state = STATE_STATUS_SYNC;
printState(_state);
return;
}
if (_bytesToSend > 0) {
_writeBufferLen = (uint16_t) _writeCmd->getSize();
_writeBuffer = new uint8_t[_bytesToSend];
memcpy(_writeBuffer, &_writeBufferLen, 2);
_writeCmd->getBytes(&_writeBuffer[2]);
_state = STATE_SEND_BYTES;
} else if (_bytesToRecv > 0) {
_state = STATE_RECV_BYTES;
} else {
_state = STATE_CMD_COMPLETE;
}
printState(_state);
}
/**
* onStateSendBytes
*
* Send the required number of bytes to the ASR-1 and then advance to command complete.
*/
void afLib::onStateSendBytes(void) {
//_theLog->printf("send bytes: %d\n", _bytesToSend);
_theTransport->sendBytesOffset((char *)_writeBuffer, &_bytesToSend, &_writeCmdOffset);
if (_bytesToSend == 0) {
_writeBufferLen = 0;
delete (_writeBuffer);
_writeBuffer = NULL;
_state = STATE_CMD_COMPLETE;
printState(_state);
}
}
/**
* onStateRecvBytes
*
* Receive the required number of bytes from the ASR-1 and then advance to command complete.
*/
void afLib::onStateRecvBytes(void) {
_theTransport->recvBytesOffset((char **)&_readBuffer, &_readBufferLen, &_bytesToRecv, &_readCmdOffset);
if (_bytesToRecv == 0) {
_state = STATE_CMD_COMPLETE;
printState(_state);
_readCmd = new Command(_theLog, _readBufferLen, &_readBuffer[2]);
//_readCmd->dumpBytes();
delete (_readBuffer);
_readBuffer = NULL;
}
}
/**
* onStateCmdComplete
*
* Call the appropriate sketch callback to report the result of the command.
* Clear the command object and go back to waiting for the next interrupt or command.
*/
void afLib::onStateCmdComplete(void) {
int result;
_state = STATE_IDLE;
printState(_state);
if (_readCmd != NULL) {
uint8_t *val = new uint8_t[_readCmd->getValueLen()];
_readCmd->getValue(val);
uint8_t state;
uint8_t reason;
switch (_readCmd->getCommand()) {
case MSG_TYPE_SET:
if (_attrSetHandler(_readCmd->getReqId(), _readCmd->getAttrId(), _readCmd->getValueLen(), val)) {
state = UPDATE_STATE_UPDATED;
reason = UPDATE_REASON_SERVICE_SET;
} else {
state = UPDATE_STATE_FAILED;
reason = UPDATE_REASON_INTERNAL_SET_FAIL;
}
result = setAttributeComplete(_readCmd->getReqId(), _readCmd->getAttrId(), _readCmd->getValueLen(), val, state, reason);
if (result != afSUCCESS) {
_theLog->printf("Can't reply to SET! This is FATAL!\n");
}
break;
case MSG_TYPE_UPDATE:
// If the attr update is a "fake" update, don't send it to the MCU
if (_readCmd->getReason() != UPDATE_REASON_FAKE_UPDATE) {
if (_readCmd->getAttrId() == _outstandingSetGetAttrId) {
_outstandingSetGetAttrId = 0;
}
static bool inNotifyHandler;
if (!inNotifyHandler) {
inNotifyHandler = true;
_attrNotifyHandler(_readCmd->getReqId(), _readCmd->getAttrId(), _readCmd->getValueLen(), val);
inNotifyHandler = false;
}
lastComplete = millis();
}
break;
default:
break;
}
delete (val);
delete (_readCmd);
_readCmdOffset = 0;
_readCmd = NULL;
}
if (_writeCmd != NULL) {
// Fake a callback here for MCU attributes as we don't get one from the module.
if (_writeCmd->getCommand() == MSG_TYPE_UPDATE && IS_MCU_ATTR(_writeCmd->getAttrId())) {
_attrNotifyHandler(_writeCmd->getReqId(), _writeCmd->getAttrId(), _writeCmd->getValueLen(), _writeCmd->getValueP());
lastComplete = millis();
}
delete (_writeCmd);
_writeCmdOffset = 0;
_writeCmd = NULL;
}
}
/**
* inSync
*
* Check to make sure the Arduino and the ASR-1 aren't trying to send data at the same time.
* Return true only if there is no collision.
*/
bool afLib::inSync(StatusCommand *tx, StatusCommand *rx) {
return (tx->getBytesToSend() == 0 && rx->getBytesToRecv() == 0) ||
(tx->getBytesToSend() > 0 && rx->getBytesToRecv() == 0) ||
(tx->getBytesToSend() == 0 && rx->getBytesToRecv() > 0);
}
/**
* isIdle
*
* Provide a way for the sketch to know if we're idle. Returns true if there are no attribute operations in progress.
*/
bool afLib::isIdle() {
if (lastComplete != 0 && (millis() - lastComplete) < MIN_TIME_BETWEEN_UPDATES_MILLIS) {
return false;
}
lastComplete = 0;
return _interrupts_pending == 0 && _state == STATE_IDLE && _outstandingSetGetAttrId == 0;
}
/**
* These methods are required to disable/enable interrupts for the Linux version of afLib.
* They are no-ops on Arduino.
*/
#ifndef ARDUINO
void disableInterrupts(){}
void enableInterrupts(){}
#endif
void afLib::mcuISR() {
#if (defined(DEBUG_TRANSPORT) && DEBUG_TRANSPORT > 0)
_theLog->printf("mcuISR\n");
#endif
updateIntsPending(1);
}
/****************************************************************************
* Queue Methods *
****************************************************************************/
static uint8_t af_queue_preemption_disable(void) {
return 0;
}
static void af_queue_preemption_enable(uint8_t is_nested) {
}
/**
* queueInit
*
* Create a small queue to prevent flooding the ASR-1 with attribute operations.
* The initial size is small to allow running on small boards like UNO.
* Size can be increased on larger boards.
*/
void afLib::queueInit() {
af_queue_init_system(af_queue_preemption_disable, af_queue_preemption_enable, _theLog);
AF_QUEUE_INIT(s_request_queue, sizeof(request_t), REQUEST_QUEUE_SIZE);
}
/**
* queuePut
*
* Add an item to the end of the queue. Return an error if we're out of space in the queue.
*/
int afLib::queuePut(uint8_t messageType, uint8_t requestId, const uint16_t attributeId, uint16_t valueLen,
const uint8_t *value, const uint8_t status, const uint8_t reason) {
queue_t volatile *p_q = &s_request_queue;
request_t *p_event = (request_t *)AF_QUEUE_ELEM_ALLOC_FROM_INTERRUPT(p_q);
if (p_event != NULL) {
p_event->messageType = messageType;
p_event->attrId = attributeId;
p_event->requestId = requestId;
p_event->valueLen = valueLen;
p_event->p_value = new uint8_t[valueLen];
memcpy(p_event->p_value, value, valueLen);
p_event->status = status;
p_event->reason = reason;
AF_QUEUE_PUT_FROM_INTERRUPT(p_q, p_event);
return afSUCCESS;
}
return afERROR_QUEUE_OVERFLOW;
}
/**
* queueGet
*
* Pull and return the oldest item from the queue. Return an error if the queue is empty.
*/
int afLib::queueGet(uint8_t *messageType, uint8_t *requestId, uint16_t *attributeId, uint16_t *valueLen,
uint8_t **value, uint8_t *status, uint8_t *reason) {
if (AF_QUEUE_PEEK_FROM_INTERRUPT(&s_request_queue)) {
request_t *p_event = (request_t *)AF_QUEUE_GET_FROM_INTERRUPT(&s_request_queue);
*messageType = p_event->messageType;
*attributeId = p_event->attrId;
*requestId = p_event->requestId;
*valueLen = p_event->valueLen;
*value = new uint8_t[*valueLen];
memcpy(*value, p_event->p_value, *valueLen);
delete (p_event->p_value);
p_event->p_value = NULL;
*status = p_event->status;
*reason = p_event->reason;
AF_QUEUE_ELEM_FREE_FROM_INTERRUPT(&s_request_queue, p_event);
return afSUCCESS;
}
return afERROR_QUEUE_UNDERFLOW;
}
/****************************************************************************
* Debug Methods *
****************************************************************************/
/**
* dumpBytes
*
* Dump a byte buffer to the debug log.
*/
void afLib::dumpBytes(char *label, int len, uint8_t *bytes) {
_theLog->printf("%s\n", label);
for (int i = 0; i < len; i++) {
if (i > 0) {
_theLog->printf(", ");
}
uint8_t b = bytes[i] & 0xff;
_theLog->printf("0x%02X", b) ;
#if 0
if (b < 0x10) {
_theLog->print("0x0");
_theLog->print(b, HEX);
} else {
_theLog->print("0x");
_theLog->print(b, HEX);
}
#endif
}
_theLog->printf("\n");
}
/**
* printState
*
* Print the current state of the afLib state machine.
*/
void afLib::printState(int state) {
#if (defined(DEBUG_TRANSPORT) && DEBUG_TRANSPORT > 0)
switch (state) {
case STATE_IDLE:
_theLog->printf("STATE_IDLE\n");
break;
case STATE_STATUS_SYNC:
_theLog->printf("STATE_STATUS_SYNC\n");
break;
case STATE_STATUS_ACK:
_theLog->printf("STATE_STATUS_ACK\n");
break;
case STATE_SEND_BYTES:
_theLog->printf("STATE_SEND_BYTES\n");
break;
case STATE_RECV_BYTES:
_theLog->printf("STATE_RECV_BYTES\n");
break;
case STATE_CMD_COMPLETE:
_theLog->printf("STATE_CMD_COMPLETE\n");
break;
default:
_theLog->printf("Unknown State!\n");
break;
}
#endif
}