dsafa

Dependencies:   mbed

Fork of IMU_oo by OX

Revision:
0:77a7d1a1c6db
Child:
1:29b8881ac539
diff -r 000000000000 -r 77a7d1a1c6db zmu9250.h
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/zmu9250.h	Sat Dec 03 18:21:47 2016 +0000
@@ -0,0 +1,160 @@
+#include "mbed.h"
+#include "MPU9250.h" 
+#include "math.h" 
+#include "kalman.h"
+
+Serial aa(USBTX,USBRX);
+
+
+class ZMU9250
+{
+    public:
+        ZMU9250()
+        {
+              
+              //Set up I2C
+              i2c.frequency(400000);  // use fast (400 kHz) I2C  
+              this->t.start();        
+              
+              // Read the WHO_AM_I register, this is a good test of communication
+              uint8_t whoami = this->mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250);  // Read WHO_AM_I register for MPU-9250
+              if (whoami == 0x71) // WHO_AM_I should always be 0x68
+              {  
+                wait(1);
+                this->mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration
+                this->mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values
+                this->mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers  
+                wait(2);
+                this->mpu9250.initMPU9250(); 
+                this->mpu9250.initAK8963(magCalibration);
+                wait(1);
+               }
+               else
+               {
+                while(1) ; // Loop forever if communication doesn't happen
+                }
+                this->mpu9250.getAres(); // Get accelerometer sensitivity
+                this->mpu9250.getGres(); // Get gyro sensitivity
+                this->mpu9250.getMres(); // Get magnetometer sensitivity
+                //magbias[0] = +470.;  // User environmental x-axis correction in milliGauss, should be automatically calculated
+                //magbias[1] = +120.;  // User environmental x-axis correction in milliGauss
+                //magbias[2] = +125.;  // User environmental x-axis correction in milliGauss
+                magbias[0] = +470;  // User environmental x-axis correction in milliGauss, should be automatically calculated
+                magbias[1] = +120;  // User environmental x-axis correction in milliGauss
+                magbias[2] = +125;  // User environmental x-axis correction in milliGauss
+        }
+        
+        void Update()
+        {
+            if(this->mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) {  // On interrupt, check if data ready interrupt
+                this->mpu9250.readAccelData(accelCount);  // Read the x/y/z adc values   
+                // Now we'll calculate the accleration value into actual g's
+                ax = (float)accelCount[0]*aRes - accelBias[0];  // get actual g value, this depends on scale being set
+                ay = (float)accelCount[1]*aRes - accelBias[1];   
+                az = (float)accelCount[2]*aRes - accelBias[2];  
+                this->mpu9250.readGyroData(gyroCount);  // Read the x/y/z adc values
+                // Calculate the gyro value into actual degrees per second
+                gx = (float)gyroCount[0]*gRes - gyroBias[0];  // get actual gyro value, this depends on scale being set
+                gy = (float)gyroCount[1]*gRes - gyroBias[1];  
+                gz = (float)gyroCount[2]*gRes - gyroBias[2];   
+                this->mpu9250.readMagData(magCount);  // Read the x/y/z adc values   
+                // Calculate the magnetometer values in milliGauss
+                // Include factory calibration per data sheet and user environmental corrections
+                mx = (float)magCount[0]*mRes*magCalibration[0] - magbias[0]+360.0f;  // get actual magnetometer value, this depends on scale being set
+                my = (float)magCount[1]*mRes*magCalibration[1] - magbias[1]-210.0f;  
+                mz = (float)magCount[2]*mRes*magCalibration[2] - magbias[2];
+                //aa.printf("x %f\ty %f\tz %f\n",mx,my,mz);
+                
+                
+            } // end if one
+            Now = this->t.read_us();
+            deltat = (float)((Now - lastUpdate)/1000000.0f) ; // set integration time by time elapsed since last filter update
+            lastUpdate = Now;
+            this->sum += deltat;
+            sumCount++;
+            this->mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
+            
+            // Pass gyro rate as rad/s
+            /*if((rand()%20)>=0)
+            {
+            this->mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f,  my,  mx, mz);
+            }else
+            {
+            //this->mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz);
+            this->mpu9250.Mad_Update(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f);
+            }*/
+            
+            
+            // Serial print and/or display at 0.5 s rate independent of data rates
+            delt_t = this->t.read_ms() - count;
+            if (delt_t > 10) { // update LCD once per half-second independent of read rate
+                tempCount = this->mpu9250.readTempData();  // Read the adc values
+                temperature = ((float) tempCount) / 333.87f + 21.0f; // Temperature in degrees Centigrade
+              // Define output variables from updated quaternion---these are Tait-Bryan angles, commonly used in aircraft orientation.
+              // In this coordinate system, the positive z-axis is down toward Earth. 
+              // Yaw is the angle between Sensor x-axis and Earth magnetic North (or true North if corrected for local declination, looking down on the sensor positive yaw is counterclockwise.
+              // Pitch is angle between sensor x-axis and Earth ground plane, toward the Earth is positive, up toward the sky is negative.
+              // Roll is angle between sensor y-axis and Earth ground plane, y-axis up is positive roll.
+              // These arise from the definition of the homogeneous rotation matrix constructed from quaternions.
+              // Tait-Bryan angles as well as Euler angles are non-commutative; that is, the get the correct orientation the rotations must be
+              // applied in the correct order which for this configuration is yaw, pitch, and then roll.
+              // For more see http://en.wikipedia.org/wiki/Conversion_between_quaternions_and_Euler_angles which has additional links.
+                yaw   = atan2(2.0f * (q[1] * q[2] + q[0] * q[3]), q[0] * q[0] + q[1] * q[1] - q[2] * q[2] - q[3] * q[3]);   
+                //yaw   = atan2(2.0f * (q[0] * q[2] + q[0] * q[3]), 1 - 2 * (  q[2] * q[2] + q[3] * q[3]));   
+                pitch = -asin(2.0f * (q[1] * q[3] - q[0] * q[2]));
+                
+                //pitch = atan2(2.0f * (q[1] * q[3] - q[0] * q[2]),q[0]*q[0]-q[1]*q[1]+q[2]*q[2]-q[3]*q[3]);
+                roll  = atan2(2.0f * (q[0] * q[1] + q[2] * q[3]), q[0] * q[0] - q[1] * q[1] - q[2] * q[2] + q[3] * q[3]);
+                //pitch = atan2(sin(roll)*(q[1]*q[3]-q[0]*q[2]),q[1]*q[2]+q[0]*q[3]);
+                pitch *= 180.0f / PI;
+                yaw   *= 180.0f / PI; 
+                //yaw   -= 13.8f; // Declination at Danville, California is 13 degrees 48 minutes and 47 seconds on 2014-04-04
+                yaw -= 0.35f;
+                roll  *= 180.0f / PI;
+                this->roll_x = roll;
+                this->pitch_y = pitch;
+                this->yaw_z = yaw;//(this->kal.getAngle(yaw*PI/180.0f,0.00,delt_t));
+                count = this->t.read_ms(); 
+                if(count > 1<<21) {
+                    this->t.start(); // start the timer over again if ~30 minutes has passed
+                    count = 0;
+                    deltat= 0;
+                    lastUpdate = this->t.read_us();
+                } // end if three.
+                this->sum = 0;
+                sumCount = 0; 
+            } // end if two.
+        }
+        
+        
+        float Roll()
+        {
+          return roll_x;   
+        }
+        
+        float Pitch()
+        {
+          return pitch_y;   
+        }
+        
+        float Yaw()
+        {
+          return yaw_z;   
+        }
+        
+        
+    private:
+        float sum;
+        uint32_t sumCount;
+        char buffer[14];
+        int roll_x;
+        kalman kal();
+        int pitch_y;
+        int yaw_z;
+        MPU9250 mpu9250;
+        Timer t;
+        
+           
+};
+
+