The MCR20A Wireless UART application functions as an wireless UART bridge between two (one-to-one) or several (one to many) boards. The application can be used with both a TERM, or with software that is capable of opening a serial port and writing to or reading from it. The characters sent or received are not necessarily ASCII printable characters.

Dependencies:   fsl_phy_mcr20a fsl_smac mbed-rtos mbed

Fork of mcr20_wireless_uart by Freescale

By default, the application uses broadcast addresses for OTA communication. This way, the application can be directly downloaded and run without any user intervention. The following use case assumes no changes have been done to the project.

  • Two (or more) MCR20A platforms (plugged into the FRDM-K64F Freescale Freedom Development platform) have to be connected to the PC using the mini/micro-USB cables.
  • The code must be downloaded on the platforms via CMSIS-DAP (or other means).
  • After that, two or more TERM applications must be opened, and the serial ports must be configured with the same baud rate as the one in the project (default baud rate is 115200). Other necessary serial configurations are 8 bit, no parity, and 1 stop bit.
  • To start the setup, each platform must be reset, and one of the (user) push buttons found on the MCR20A platform must be pressed. The user can press any of the non-reset buttons on the FRDM-K64F Freescale Freedom Development platform as well. *This initiates the state machine of the application so user can start.

Documentation

SMAC Demo Applications User Guide

main.cpp

Committer:
andreikovacs
Date:
2015-06-29
Revision:
27:1eb29717bfd9
Parent:
26:56ca40dcfae1

File content as of revision 27:1eb29717bfd9:

#include "mbed.h"
#include "rtos.h"

#include "Phy.h"
#include "SMAC_Interface.h"
#include "SMAC_Config.h"
#include "MemManager.h"
#include "circular_buffer.h"

char * const cu8FreescaleLogo[]={  
  "\f\r\n",
  "\n\r\n\r\n\r      #\n",
  "\r     ###\n",
  "\r    ###  *\n",
  "\r     #  ***\n",
  "\r       ***  #\n",
  "\r        *  ###\n",
  "\r          ###\n",
  "\r        *  #\n",
  "\r       ***\n",
  "\r      ***  #\n",
  "\r    #  *  ###\n",
  "\r   ###   ###\n",
  "\r  ###  *  #         F R E E S C A L E\n",
  "\r   #  ***\n",
  "\r     ***            S E M I C O N D U C T O R\n",
  "\r   #  *\n",
  "\r  ###               2 0 1 5\n",
  "\r ###\n",
  "\r  #           Wireless Uart Demo\r\n\n",
  NULL
};

#define gMcps_Cnf_EVENT_c        (1<<1)
#define gMcps_Ind_EVENT_c        (1<<2)
#define gMlme_EdCnf_EVENT_c      (1<<3)
#define gMlme_CcaCnf_EVENT_c     (1<<4)
#define gMlme_TimeoutInd_EVENT_c (1<<5)
#define gWUSelf_EVENT_c          (1<<6)

#define gDefaultBaudRate_UART_c 115200UL

Serial uart(USBTX, USBRX);
CircularBuffer uartBuf;

#ifdef VERBOSE
static bool_t bCCAFailed;
static bool_t bACKFailed;
#endif
uint32_t gTaskEventFlags;
static uint8_t gau8TxDataBuffer[gMaxSmacSDULength_c  + sizeof(rxPacket_t)];  
txPacket_t *gAppTxPacket;
rxPacket_t *gAppRxPacket;
static txContextConfig_t txConfigContext;


void PrintMenu(char * const pu8Menu[])
{
  uint8_t u8Index = 0;
  while(pu8Menu[u8Index]){
    uart.printf(pu8Menu[u8Index]);
    u8Index++;
  }
}


void InitProject(void);
void InitApp(void);

extern smacErrors_t smacToAppMlmeSap(smacToAppMlmeMessage_t* pMsg, instanceId_t instance);
extern smacErrors_t smacToAppMcpsSap(smacToAppDataMessage_t* pMsg, instanceId_t instance);

DigitalOut led1(LED_GREEN);
InterruptIn sw2(SW2);
uint32_t button_pressed;
Thread *thread2;
Thread *eventsThread;

void uartSetBaudRate(uint32_t b)
{
    uart.baud(b);
}

void sw2_press(void)
{
    thread2->signal_set(0x1);
}

void led_thread(void const *argument)
{
    while (true) {
        led1 = !led1;
        Thread::wait(200);
    }
}

void button_thread(void const *argument)
{
    while (true) {
        Thread::signal_wait(0x1);
        button_pressed++;
    }
}

void events_thread(void const *argument)
{
    uint8_t rcvd = 0, c = 0; 

    while (true)
    {
        Thread::signal_wait(0x1);
        if(gMcps_Cnf_EVENT_c == (gTaskEventFlags & gMcps_Cnf_EVENT_c))
        {
            //get back in RX
            MLMERXEnableRequest(gAppRxPacket, 0); 
            //uart.printf("McpsDataCnf: Packet sent\r\n");

        }
        
        if(gMcps_Ind_EVENT_c == (gTaskEventFlags & gMcps_Ind_EVENT_c))
        {
            rcvd = gAppRxPacket->smacPdu.smacPdu[0];

            //get back in RX
            //gAppRxPacket = (rxPacket_t*)MEM_BufferAlloc(gMaxSmacSDULength_c + sizeof(rxPacket_t));
            //gAppRxPacket->u8MaxDataLength = gMaxSmacSDULength_c;
            uart.printf("%c", rcvd);
            MLMERXEnableRequest(gAppRxPacket, 0);

            
        }
        
        if(gMlme_TimeoutInd_EVENT_c == (gTaskEventFlags & gMlme_TimeoutInd_EVENT_c))
        {
            uart.printf("MlmeTimeoutInd: \r\n");
        }
        
        if(gMlme_EdCnf_EVENT_c == (gTaskEventFlags & gMlme_EdCnf_EVENT_c))
        {
            uart.printf("EdCnf: \r\n");
        }
        
        if(gMlme_CcaCnf_EVENT_c == (gTaskEventFlags & gMlme_CcaCnf_EVENT_c))
        {
            uart.printf("CcaCnf: \r\n");
        }
        
        if(gWUSelf_EVENT_c == (gTaskEventFlags & gWUSelf_EVENT_c))
        {
            if (buffer_Ok_c == uartBuf.getFromBuffer(&c))
            {
                gAppTxPacket->smacPdu.smacPdu[0] = c;
                gAppTxPacket->u8DataLength = 1;
                (void)MLMERXDisableRequest();
                (void)MCPSDataRequest(gAppTxPacket);
            }
        }
       
        gTaskEventFlags = 0;
    }
}

int main()
{
    MEM_Init();
    Thread thread(led_thread);
    thread2 = new Thread(button_thread);
    eventsThread = new Thread(events_thread);
    Phy_Init();
    InitSmac();
    
    uartSetBaudRate(gDefaultBaudRate_UART_c);
    
    //Tell SMAC who to call when it needs to pass a message to the application thread.
    Smac_RegisterSapHandlers((SMAC_APP_MCPS_SapHandler_t)smacToAppMcpsSap,(SMAC_APP_MLME_SapHandler_t)smacToAppMlmeSap,0);

    InitApp();
    
    PrintMenu(cu8FreescaleLogo);
	    
    button_pressed = 0;
    sw2.fall(&sw2_press);
    while (true) 
    {
        if(uart.readable())
        { 
            (void)uartBuf.addToBuffer(uart.getc());
        }
        if ( uartBuf.getCount() )
        {
            gTaskEventFlags |= gWUSelf_EVENT_c;
            eventsThread->signal_set(0x1);
        }   
        Thread::yield();
    }
}

void InitApp()
{
  gAppTxPacket = (txPacket_t*)gau8TxDataBuffer;   //Map TX packet to buffer
  gAppRxPacket = (rxPacket_t*)MEM_BufferAlloc(gMaxSmacSDULength_c + sizeof(rxPacket_t));
  
  InitProject();
  
  SMACFillHeader(&(gAppTxPacket->smacHeader), gDefaultAddress_c);                  
  
  (void)MLMEPAOutputAdjust(gDefaultOutputPower_c);
  (void)MLMESetChannelRequest(gDefaultChannelNumber_c);         
  (void)MLMEConfigureTxContext(&txConfigContext);
  //AppDelayTmr = TMR_AllocateTimer();
  gAppRxPacket->u8MaxDataLength = gMaxSmacSDULength_c;
  (void)MLMERXEnableRequest(gAppRxPacket, 0);
}

/* (Management) Sap handler for managing timeout indication and ED confirm
   This is running in INTERRUPT context, so need to send messages to one of the task */
smacErrors_t smacToAppMlmeSap(smacToAppMlmeMessage_t* pMsg, instanceId_t instance)
{
  switch(pMsg->msgType)
  {
    case gMlmeEdCnf_c:
        gTaskEventFlags |= gMlme_EdCnf_EVENT_c;
        break;
    case gMlmeCcaCnf_c:
        gTaskEventFlags |= gMlme_CcaCnf_EVENT_c;
        break;
    case gMlmeTimeoutInd_c:
        gTaskEventFlags |= gMlme_TimeoutInd_EVENT_c;
        break;
    default:
        break;
  }
  eventsThread->signal_set(0x1);
  MEM_BufferFree(pMsg);
  return gErrorNoError_c;
}

/* (Data) Sap handler for managing data confirm and data indication
   This is running in INTERRUPT context, so need to send messages to one of the task */
smacErrors_t smacToAppMcpsSap(smacToAppDataMessage_t* pMsg, instanceId_t instance)
{  
    switch(pMsg->msgType)
    {
        case gMcpsDataInd_c:
            if(pMsg->msgData.dataInd.pRxPacket->rxStatus == rxSuccessStatus_c)
            {       
                gTaskEventFlags |= gMcps_Ind_EVENT_c;
            }
            break;

        case gMcpsDataCnf_c:
#ifdef VERBOSE
            if(pMsg->msgData.dataCnf.status == gErrorChannelBusy_c)
            {
                bCCAFailed = TRUE;
            }

            if(pMsg->msgData.dataCnf.status == gErrorNoAck_c)
            {
                bACKFailed = TRUE;
            }
#endif

            gTaskEventFlags |= gMcps_Cnf_EVENT_c;
            break;

        default:
            break;
    }
    eventsThread->signal_set(0x1);
    MEM_BufferFree(pMsg);

    return gErrorNoError_c;
}

void InitProject(void)
{   
  /*Global Data init*/
#ifdef VERBOSE
  bACKFailed                        = FALSE;
  bCCAFailed                        = FALSE;
#endif

  gTaskEventFlags = 0;

  txConfigContext.autoAck           = FALSE;
  txConfigContext.ccaBeforeTx       = FALSE;
  txConfigContext.retryCountAckFail = 0;
  txConfigContext.retryCountCCAFail = 0;
}