Robotics LAB DCMotor
Dependencies: mbed
Fork of Robotics_Lab_DCMotor by
main.cpp
- Committer:
- roger5641
- Date:
- 2016-05-25
- Revision:
- 2:9caf46a5fe5a
- Parent:
- 1:6747911cdd90
- Child:
- 3:0856a9fa97ec
File content as of revision 2:9caf46a5fe5a:
/*LAB_DCMotor*/ #include "mbed.h" //The number will be compiled as type "double" in default //Add a "f" after the number can make it compiled as type "float" #define Ts 0.01f //period of timer1 (s) #define Kp 0.0025f #define Ki 0.008f PwmOut pwm1(D7); PwmOut pwm1n(D11); PwmOut pwm2(D8); PwmOut pwm2n(A3); Serial bluetooth(D10,D2); Serial pc(D1, D0); DigitalOut led1(A4); DigitalOut led2(A5); //Motor1 sensor InterruptIn HallA_1(A1); InterruptIn HallB_1(A2); //Motor2 sensor InterruptIn HallA_2(D13); InterruptIn HallB_2(D12); Ticker timer1; void timer1_interrupt(void); void CN_interrupt(void); void init_TIMER(void); void init_PWM(void); void init_CN(void); void init_err(void); int8_t stateA_1=0, stateB_1=0, stateA_2=0, stateB_2=0; int8_t state_1 = 0, state_1_old = 0, state_2 = 0, state_2_old = 0; int v1Count = 0; int v2Count = 0; float v1 = 0.0, v1_ref = 0.0; float v1_err = 0.0, v1_ierr = 0.0, PIout_1 = 0.0, PIout_1_old = 0.0; float v2 = 0.0, v2_ref = 0.0; float v2_err = 0.0, v2_ierr = 0.0, PIout_2 = 0.0, PIout_2_old = 0.0; int main() { init_TIMER(); init_PWM(); init_CN(); bluetooth.baud(115200); //設定鮑率 pc.baud(57600); while(1) { if(pc.readable()) { bluetooth.putc(pc.getc()); } if(bluetooth.readable()) { pc.putc(bluetooth.getc()); } } } void timer1_interrupt(void) { //Motor 1 v1 = (float)v1Count * 100.0f / 12.0f * 60.0f / 29.0f; //unit: rpm v1Count = 0; ///code for PI control/// v1_err = v1_ref - v1; v1_ierr = Ts*v1_err + v1_ierr; PIout_1 = Kp*v1_err + Ki*v1_ierr; ///////////////////////// if(PIout_1 >= 0.5f)PIout_1 = 0.5f; else if(PIout_1 <= -0.5f)PIout_1 = -0.5f; pwm1.write(PIout_1 + 0.5f); TIM1->CCER |= 0x4; //Motor 2 v2 = (float)v2Count * 100.0f / 12.0f * 60.0f / 29.0f; //unit: rpm v2Count = 0; ///code for PI control/// v2_err = v2_ref - v2; v2_ierr = Ts*v2_err + v2_ierr; PIout_2 = Kp*v2_err + Ki*v2_ierr; ///////////////////////// if(PIout_2 >= 0.5f)PIout_2 = 0.5f; else if(PIout_2 <= -0.5f)PIout_2 = -0.5f; pwm2.write(PIout_2 + 0.5f); TIM1->CCER |= 0x40; switch(bluetooth.getc()) { case '1': v1_ref = 30; v2_ref = 30; init_err(); break; case '2': v1_ref = 40; v2_ref = 40; init_err(); break; case '3': v1_ref = 50; v2_ref = 50; init_err(); break; case '4': v1_ref = 60; v2_ref = 60; init_err(); break; case '5': v1_ref = 70; v2_ref = 70; init_err(); break; case '6': v1_ref = 80; v2_ref = 80; init_err(); break; case '7': v1_ref = 100; v2_ref = 100; init_err(); break; case '8': v1_ref = 0; v2_ref = 0; break; } } void CN_interrupt(void) { //Motor 1 stateA_1 = HallA_1.read(); stateB_1 = HallB_1.read(); ///code for state determination/// if(stateA_1==0&&stateB_1==0){ state_1 = 1;} else if(stateA_1==0&&stateB_1==1){ state_1 = 2;} else if(stateA_1==1&&stateB_1==1){ state_1 = 3;} else if(stateA_1==1&&stateB_1==0){ state_1 = 4;} if(state_1 == 1) { if(state_1-state_1_old == -3) v1Count=v1Count+1; else if(state_1-state_1_old == -1) v1Count=v1Count-1; } else if(state_1 == 2) { if(state_1-state_1_old == 1) v1Count=v1Count+1; else if(state_1-state_1_old == -1) v1Count=v1Count-1; } else if(state_1 == 3) { if(state_1-state_1_old == 1) v1Count=v1Count+1; else if(state_1-state_1_old == -1) v1Count=v1Count-1; } else if(state_1 == 4) { if(state_1-state_1_old == 1) v1Count=v1Count+1; else if(state_1-state_1_old == 3) v1Count=v1Count-1; } state_1_old = state_1; ////////////////////////////////// //Forward //v1Count +1 //Inverse //v1Count -1 //Motor 2 stateA_2 = HallA_2.read(); stateB_2 = HallB_2.read(); ///code for state determination/// if(stateA_2==0&&stateB_2==0){ state_2 = 1;} else if(stateA_2==0&&stateB_2==1){ state_2 = 2;} else if(stateA_2==1&&stateB_2==1){ state_2 = 3;} else if(stateA_2==1&&stateB_2==0){ state_2 = 4;} if(state_2 == 1) { if(state_2-state_2_old == -3) v2Count=v2Count+1; else if(state_2-state_2_old == -1) v2Count=v2Count-1; } else if(state_2 == 2) { if(state_2-state_2_old == 1) v2Count=v2Count+1; else if(state_2-state_2_old == -1) v2Count=v2Count-1; } else if(state_2 == 3) { if(state_2-state_2_old == 1) v2Count=v2Count+1; else if(state_2-state_2_old == -1) v2Count=v2Count-1; } else if(state_2 == 4) { if(state_2-state_2_old == 1) v2Count=v2Count+1; else if(state_2-state_2_old == 3) v2Count=v2Count-1; } state_2_old = state_2; ////////////////////////////////// //Forward //v2Count +1 //Inverse //v2Count -1 } void init_TIMER(void) { timer1.attach_us(&timer1_interrupt, 10000);//10ms interrupt period (100 Hz) } void init_PWM(void) { pwm1.period_us(50); pwm1.write(0.5); TIM1->CCER |= 0x4; pwm2.period_us(50); pwm2.write(0.5); TIM1->CCER |= 0x40; } void init_CN(void) { HallA_1.rise(&CN_interrupt); HallA_1.fall(&CN_interrupt); HallB_1.rise(&CN_interrupt); HallB_1.fall(&CN_interrupt); HallA_2.rise(&CN_interrupt); HallA_2.fall(&CN_interrupt); HallB_2.rise(&CN_interrupt); HallB_2.fall(&CN_interrupt); stateA_1 = HallA_1.read(); stateB_1 = HallB_1.read(); stateA_2 = HallA_2.read(); stateB_2 = HallB_2.read(); } void init_err(void) { v1_ierr = 0.0; v2_ierr = 0.0; }