Maxim Integrated's IoT development kit.
Dependencies: MAX30101 MAX30003 MAX113XX_Pixi MAX30205 max32630fthr USBDevice
max30003_app.cpp
- Committer:
- Mahir Ozturk
- Date:
- 2018-06-28
- Revision:
- 13:fba77a5d0fa0
File content as of revision 13:fba77a5d0fa0:
/*
* max30003_app.c
*
* Created on: Jun 20, 2018
* Author: Mahir.Ozturk
*/
#include <mbed.h>
#include "max30003_app.h"
#include "MAX30003.h"
#define MAX30003_IRQ_ASSERTED_SIGNAL_ID 1
static Thread *thread = 0;
/* ECG FIFO nearly full callback */
void ecgFIFO_callback() {
if (thread != 0) {
thread->signal_set(MAX30003_IRQ_ASSERTED_SIGNAL_ID);
}
}
void ecg_config(MAX30003& ecgAFE)
{
// Reset ECG to clear registers
ecgAFE.writeRegister( MAX30003::SW_RST , 0);
// General config register setting
MAX30003::GeneralConfiguration_u CNFG_GEN_r;
CNFG_GEN_r.bits.en_ecg = 1; // Enable ECG channel
CNFG_GEN_r.bits.rbiasn = 1; // Enable resistive bias on negative input
CNFG_GEN_r.bits.rbiasp = 1; // Enable resistive bias on positive input
CNFG_GEN_r.bits.en_rbias = 1; // Enable resistive bias
CNFG_GEN_r.bits.imag = 2; // Current magnitude = 10nA
CNFG_GEN_r.bits.en_dcloff = 1; // Enable DC lead-off detection
ecgAFE.writeRegister( MAX30003::CNFG_GEN , CNFG_GEN_r.all);
// ECG Config register setting
MAX30003::ECGConfiguration_u CNFG_ECG_r;
CNFG_ECG_r.bits.dlpf = 1; // Digital LPF cutoff = 40Hz
CNFG_ECG_r.bits.dhpf = 1; // Digital HPF cutoff = 0.5Hz
CNFG_ECG_r.bits.gain = 3; // ECG gain = 160V/V
CNFG_ECG_r.bits.rate = 2; // Sample rate = 128 sps
ecgAFE.writeRegister( MAX30003::CNFG_ECG , CNFG_ECG_r.all);
//R-to-R configuration
MAX30003::RtoR1Configuration_u CNFG_RTOR_r;
CNFG_RTOR_r.bits.wndw = 0b0011; // WNDW = 96ms
CNFG_RTOR_r.bits.rgain = 0b1111; // Auto-scale gain
CNFG_RTOR_r.bits.pavg = 0b11; // 16-average
CNFG_RTOR_r.bits.ptsf = 0b0011; // PTSF = 4/16
CNFG_RTOR_r.bits.en_rtor = 1; // Enable R-to-R detection
ecgAFE.writeRegister( MAX30003::CNFG_RTOR1 , CNFG_RTOR_r.all);
//Manage interrupts register setting
MAX30003::ManageInterrupts_u MNG_INT_r;
MNG_INT_r.bits.efit = 0b00011; // Assert EINT w/ 4 unread samples
MNG_INT_r.bits.clr_rrint = 0b01; // Clear R-to-R on RTOR reg. read back
ecgAFE.writeRegister( MAX30003::MNGR_INT , MNG_INT_r.all);
//Enable interrupts register setting
MAX30003::EnableInterrupts_u EN_INT_r;
EN_INT_r.bits.en_eint = 1; // Enable EINT interrupt
EN_INT_r.bits.en_rrint = 1; // Enable R-to-R interrupt
EN_INT_r.bits.intb_type = 3; // Open-drain NMOS with internal pullup
ecgAFE.writeRegister( MAX30003::EN_INT , EN_INT_r.all);
//Dyanmic modes config
MAX30003::ManageDynamicModes_u MNG_DYN_r;
MNG_DYN_r.bits.fast = 0; // Fast recovery mode disabled
ecgAFE.writeRegister( MAX30003::MNGR_DYN , MNG_DYN_r.all);
// MUX Config
MAX30003::MuxConfiguration_u CNFG_MUX_r;
CNFG_MUX_r.bits.openn = 0; // Connect ECGN to AFE channel
CNFG_MUX_r.bits.openp = 0; // Connect ECGP to AFE channel
ecgAFE.writeRegister( MAX30003::CNFG_EMUX , CNFG_MUX_r.all);
return;
}
void max30003_reader_task(struct max30003_reader_task_args *args)
{
// Constants
const int EINT_STATUS = 1 << 23;
const int RTOR_STATUS = 1 << 10;
const int RTOR_REG_OFFSET = 10;
const float RTOR_LSB_RES = 0.0078125f;
const int FIFO_OVF = 0x7;
const int FIFO_VALID_SAMPLE = 0x0;
const int FIFO_FAST_SAMPLE = 0x1;
const int ETAG_BITS = 0x7;
uint32_t ecgFIFO, RtoR, readECGSamples, ETAG[32], status;
float BPM;
Timer bleNotifyTimer;
thread = args->self;
MAX30003 max30003(args->spiBus, args->spiCS); /* MAX30003WING board */
InterruptIn ecgFIFO_int(P5_4); // Config P5_4 as int. in for the
ecgFIFO_int.fall(&ecgFIFO_callback); // ecg FIFO almost full interrupt
ecg_config(max30003); // Config ECG
max30003.writeRegister( MAX30003::SYNCH , 0);
bleNotifyTimer.start();
while (1) {
// Read back ECG samples from the FIFO
thread->signal_wait(MAX30003_IRQ_ASSERTED_SIGNAL_ID);
while (1) {
/* Read back ECG samples from the FIFO */
status = max30003.readRegister( MAX30003::STATUS ); // Read the STATUS register
if ((status & (RTOR_STATUS | EINT_STATUS)) == 0) {
break;
}
// Check if R-to-R interrupt asserted
if ((status & RTOR_STATUS) == RTOR_STATUS) {
// printf("R-to-R Interrupt \r\n");
// Read RtoR register
RtoR = max30003.readRegister(MAX30003::RTOR) >> RTOR_REG_OFFSET;
// Convert to BPM
BPM = 1.0f / ( RtoR * RTOR_LSB_RES / 60.0f );
if (bleNotifyTimer.read_ms() >= (args->notify_period_sec * 1000)) {
printf("BPM: %.2f\r\n", BPM);
bleGattAttrWrite(args->gatt, (uint8_t *)&BPM, sizeof(BPM));
bleNotifyTimer.reset();
}
}
// Check if EINT interrupt asserted
if ((status & EINT_STATUS) == EINT_STATUS) {
readECGSamples = 0; // Reset sample counter
do {
ecgFIFO = max30003.readRegister( MAX30003::ECG_FIFO ); // Read FIFO
ETAG[readECGSamples] = ( ecgFIFO >> 3 ) & ETAG_BITS; // Isolate ETAG
readECGSamples++; // Increment sample counter
// Check that sample is not last sample in FIFO
} while (ETAG[readECGSamples-1] == FIFO_VALID_SAMPLE ||
ETAG[readECGSamples-1] == FIFO_FAST_SAMPLE);
// Check if FIFO has overflowed
if (ETAG[readECGSamples - 1] == FIFO_OVF){
max30003.writeRegister( MAX30003::FIFO_RST , 0); // Reset FIFO
}
}
}
}
}