Maxim Integrated's IoT development kit.
Dependencies: MAX30101 MAX30003 MAX113XX_Pixi MAX30205 max32630fthr USBDevice
max30101_algo.cpp
- Committer:
- mahirozturk
- Date:
- 2018-05-09
- Revision:
- 12:1300cb0f6274
- Parent:
- 1:efe9cad8942f
- Child:
- 13:fba77a5d0fa0
File content as of revision 12:1300cb0f6274:
/*******************************************************************************
* Copyright (C) 2018 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*******************************************************************************
*/
#include "max30101_algo.h"
//helper functions for the heart rate and SpO2 function
uint16_t avg_dc_est(int32_t *p, uint16_t x);
void lp_dfir_flt(int16_t din0, int16_t din1, int16_t din2, int16_t *dout0, int16_t *dout1, int16_t *dout2) ;
int32_t mul16(int16_t x, int16_t y);
//
// Heart Rate/SpO2 Monitor function takes sample input 'dinIR' and dinRed.
// Other inputs:
// ns -> Sample Counter, increments with each sample input.
// SampRate -> Input data real-time sample rate.
// dinLShft -> Number of left shifts for data to be 16 bit wide.
// compSpO2 -> If '1' compute SpO2 value,else compute HR only.
//
// Outputs:
// ir_ac_comp -> AC component of the IR signal.
// red_ac_comp -> AC component of the Red signal.
// ir_ac_mag -> Peak to Peak magnitude of the IR signal.
// red_ac_mag -> Peak to Peak magnitude of the Red signal.
// HRbpm -> Heart Rate in beats per minute.
// SpO2 -> SpO2 value as %saturation.
// DRdy -> '1' when new data is available.
//
void HRSpO2Func(uint32_t dinIR, uint32_t dinRed, uint32_t dinGreen, uint32_t ns, uint16_t SampRate, uint16_t compSpO2,
int16_t *ir_ac_comp, int16_t *red_ac_comp, int16_t *green_ac_comp, int16_t *ir_ac_mag, int16_t *red_ac_mag,
int16_t *green_ac_mag, uint16_t *HRbpm2, uint16_t *SpO2B, uint16_t *DRdy)
{
static int32_t ir_avg_reg = 0;
static int32_t red_avg_reg = 0;
static int32_t green_avg_reg = 0;
static int16_t ir_ac_sig_cur = 0;
static int16_t ir_ac_sig_min = 0;
static int16_t ir_ac_sig_max = 0;
static int16_t ir_avg_est;
static int16_t ir_pedge = 0, ir_nedge = 0;
static int16_t ir_pzxic, ir_pzxip;
static int16_t ir_nzxic;
static int16_t red_ac_sig_cur = 0;
static int16_t red_ac_sig_min = 0;
static int16_t red_ac_sig_max = 0;
static int16_t red_avg_est;
static int16_t green_avg_est;
static int16_t green_ac_sig_cur = 0;
//static int16_t green_ac_sig_cur=0;
static int16_t green_ac_sig_pre;
static int16_t green_ac_sig_max ;
static int16_t green_ac_sig_min;
static int16_t green_mac_FIFO[5];
int16_t meanGreenMagFIFO;
int16_t minAmpForHeartBeat ;
uint32_t IRData, RedData, greenData, rnum, rden, rdens;
uint16_t zeros_in_HrQue = 0, posCount = 0;
static uint32_t prevPeakLoc = 0;
static int16_t IrFIFO[100];
static int16_t HrQue[10], lastKnownGoodHr[10];
static int16_t SPO2Que[5];
int16_t SPO2score[5];
static uint16_t HrQindex = 0, lengthOfposCountExceeding = 0;
static uint16_t initHrQueCounter = 0, fingerOff = 0;
static int16_t HrQueSmoothing[3];
static int16_t SPO2QueSmoothing[3];
int16_t k, j;
uint32_t peakLoc ;
int16_t bufferIdx1, bufferIdx2;
int16_t maxFIFO, IdxMaxFIFO ;
int16_t HRperiod2, HRComp2, deltaHR;
int16_t cSpO2, SpO2;
int16_t HrCount = 0, HrSum = 0, meanGreenMagFIFOcounter = 0;
int16_t SPO2D, meanHrQ;
int16_t dx[99], cumsumX[99];
static int16_t SPO2QueCounter = 0 ; //, lastDisplayedHrValue;
int16_t validSPO2Count = 0;
int16_t validSPO2Sum = 0;
int16_t SPO2scoreAverage = 0;
int16_t SPO2scoreSum = 0 ;
// int16_t deltaMeanLastKnownGoodHr = 0, meanLastKnownGoodHr = 0;
// int16_t counterMeanLastKnownGoodHr = 0;
/* clear some vars if fresh new start */
if ((ns == 0) || (fingerOff > 300)) {
ir_avg_reg = 0;
red_avg_reg = 0;
green_avg_reg = 0;
ir_ac_sig_cur = 0;
ir_ac_sig_min = 0;
ir_ac_sig_max = 0;
ir_avg_est = 0;
green_avg_est = 0;
red_avg_est = 0 ;
ir_pedge = 0;
ir_nedge = 0;
ir_pzxic = 0;
ir_pzxip = 0;
ir_nzxic = 0 ;
//ir_nzxip = 0;
red_ac_sig_cur = 0;
red_ac_sig_min = 0;
red_ac_sig_max = 0;
prevPeakLoc = 0 ;
bufferIdx1 = 0 ;
bufferIdx2 = 0;
HrQindex = 0;
initHrQueCounter = 0;
lengthOfposCountExceeding = 0 ;
fingerOff = 0;
HRComp2 = 0;
for (k = 0 ; k < 100 ; k++) {
IrFIFO[k] = 0;
}
for (k = 0 ; k < 10 ; k++) {
HrQue[k] = 0;
lastKnownGoodHr[k] = 0;
}
for (k = 0 ; k < 3 ; k++) {
HrQueSmoothing[k] = 70;
SPO2QueSmoothing[k] = 97;
}
for (k = 0 ; k < 5 ; k++) {
SPO2Que[k] = 97;
SPO2score[k] = 0;
green_mac_FIFO[k] = 0;
}
SPO2QueCounter = 0;
*SpO2B = 97;
*HRbpm2 = 0;
*DRdy = 0 ;
}
/* Save current state */
green_ac_sig_pre = green_ac_sig_cur;
/* Process next data sample */
minAmpForHeartBeat = 0;
IRData = dinIR;
RedData = dinRed;
greenData = dinGreen ;
ir_avg_est = avg_dc_est(&ir_avg_reg, IRData);
red_avg_est = avg_dc_est(&red_avg_reg, RedData);
green_avg_est = avg_dc_est(&green_avg_reg, greenData);
lp_dfir_flt((uint16_t)(IRData - ir_avg_est), (uint16_t)(RedData - red_avg_est),
(uint16_t)(greenData - green_avg_est), &ir_ac_sig_cur, &red_ac_sig_cur, &green_ac_sig_cur);
*ir_ac_comp = ir_ac_sig_cur;
*red_ac_comp = red_ac_sig_cur;
*green_ac_comp = green_ac_sig_cur;
/* save to FIFO */
for (k = 1 ; k < 100 ; k++) {
IrFIFO[100 - k] = IrFIFO[99 - k];
}
IrFIFO[0] = green_ac_sig_cur ; // invert
for (k = 0 ; k < 97 ; k++) {
dx[k] = IrFIFO[k + 2] - IrFIFO[k] ;
}
dx[97] = dx[96];
dx[98] = dx[96];
for (k = 0 ; k < 99 ; k++) {
if (dx[k] > 0) {
dx[k] = 1;
} else {
dx[k] = 0;
}
}
cumsumX[0] = 0;
for (k = 1; k < 99 ; k++) {
if (dx[k] > 0) {
cumsumX[k] = cumsumX[k - 1] + dx[k] ;
} else {
cumsumX[k] = 0;
}
}
/* determine noise
* ignore less than 3 consecutive non-zeros's
* detect # of sign change
*/
posCount = 0;
for (k = 1; k < 99 ; k++) {
if (cumsumX[k] > 0) {
posCount ++ ;
} else if (cumsumX[k] == 0) {
if (posCount < 4 && k >= 4) {
for (j = k - 1; j > k - posCount - 1; j--) {
cumsumX[j] = 0 ;
}
}
posCount = 0;
}
}
/* ignore less than 3 consecutive zeros's */
posCount = 0;
for (k = 1; k < 99 ; k++) {
if (cumsumX[k] == 0) {
posCount ++ ;
} else if (cumsumX[k] > 0) {
if (posCount < 4 && k >= 4) {
for (j = k - 1; j > k - posCount - 1; j--) {
cumsumX[j] = 100 ;
}
}
posCount = 0;
}
}
/* detect # of sign change */
posCount = 0; /* sign change counter */
for (k = 0; k < 98 ; k++) {
if (cumsumX[k] == 0 && cumsumX[k + 1] > 0) {
posCount ++;
}
}
if (posCount >= 4) {
lengthOfposCountExceeding ++ ;
} else {
lengthOfposCountExceeding = 0 ;
}
/* Detect IR channel positive zero crossing (rising edge) */
if ((green_ac_sig_pre < 0) && (green_ac_sig_cur >= 0) && fingerOff == 0) {
*ir_ac_mag = ir_ac_sig_max - ir_ac_sig_min;
*red_ac_mag = red_ac_sig_max - red_ac_sig_min;
*green_ac_mag = green_ac_sig_max - green_ac_sig_min;
if (*green_ac_mag > 0) {
for (k = 0; k < 4 ; k++) {
green_mac_FIFO[k] = green_mac_FIFO[k + 1];
}
green_mac_FIFO[4] = *green_ac_mag ;
if (green_mac_FIFO[4] > 1000) {
green_mac_FIFO[4] = 1000;
}
}
meanGreenMagFIFO = 0;
meanGreenMagFIFOcounter = 0;
for (k = 0; k < 5 ; k++) {
if (green_mac_FIFO[k] > 0) {
meanGreenMagFIFO = meanGreenMagFIFO + green_mac_FIFO[k] ;
meanGreenMagFIFOcounter++;
}
}
if (meanGreenMagFIFOcounter >= 2) {
meanGreenMagFIFO = meanGreenMagFIFO / meanGreenMagFIFOcounter ;
minAmpForHeartBeat = meanGreenMagFIFO / 4 ; //25% of mean of past heart beat
} else {
minAmpForHeartBeat = 75;
}
if (minAmpForHeartBeat < 75) {
minAmpForHeartBeat = 75;
}
if (minAmpForHeartBeat > 400) {
minAmpForHeartBeat = 400;
}
ir_pedge = 1;
ir_nedge = 0;
ir_ac_sig_max = 0;
ir_pzxip = ir_pzxic;
ir_pzxic = ns;
bufferIdx1 = ir_pzxic - ir_nzxic;
bufferIdx2 = ir_pzxic - ir_pzxip;
if ((*green_ac_mag) > minAmpForHeartBeat && (*green_ac_mag) < 20000 && bufferIdx1 >= 0
&& bufferIdx1 < 100 && bufferIdx2 >= 0 && bufferIdx2 < 100 && bufferIdx1 < bufferIdx2) { // was <5000
maxFIFO = -32766;
IdxMaxFIFO = 0;
for (j = bufferIdx1; j <= bufferIdx2; j++) { // find max peak
if (IrFIFO[j] > maxFIFO) {
maxFIFO = IrFIFO[j];
IdxMaxFIFO = j;
}
}
peakLoc = ir_pzxic - IdxMaxFIFO + 1 ;
if (prevPeakLoc != 0) {
HRperiod2 = (uint16_t)(peakLoc - prevPeakLoc);
if (HRperiod2 > 33 && HRperiod2 < 134) {
HRComp2 = (6000 / HRperiod2);
fingerOff = 0 ;
} else {
HRComp2 = 0 ;
}
} else {
HRComp2 = 0 ;
}
if (initHrQueCounter < 10 && HRComp2 > 0) {
HrQue[HrQindex] = HRComp2;
HrQindex++;
initHrQueCounter ++;
if (HrQindex == 10) {
HrQindex = 0;
}
}
if (initHrQueCounter > 7 && lengthOfposCountExceeding <= 3) {
if (HRComp2 > 0) {
HrCount = 0;
HrSum = 0;
zeros_in_HrQue = 0;
for (k = 1 ; k < initHrQueCounter ; k++) {
if (HrQue[k] > 0) {
HrSum += HrQue[k];
HrCount ++;
} else {
zeros_in_HrQue ++;
}
}
meanHrQ = HrSum / HrCount ;
deltaHR = lastKnownGoodHr[0] / 10;
if (HRComp2 > lastKnownGoodHr[0] - deltaHR && HRComp2 < lastKnownGoodHr[0] + deltaHR) {
for (k = 1 ; k < 10 ; k++) {
HrQue[10 - k] = HrQue[9 - k];
}
HrQue[0] = HRComp2;
} /* HR smoothing using FIFO queue */
if (zeros_in_HrQue <= 2) {
for (k = 1 ; k < 3 ; k++) {
HrQueSmoothing[3 - k] = HrQueSmoothing[2 - k];
}
HrQueSmoothing[0] = meanHrQ ;
HRComp2 = ((HrQueSmoothing[0] << 2) + (HrQueSmoothing[1] << 1) + (HrQueSmoothing[2] << 1)) >> 3;
*HRbpm2 = HRComp2 ;
for (k = 1 ; k < 10 ; k++) {
lastKnownGoodHr[10 - k] = lastKnownGoodHr[9 - k];
}
lastKnownGoodHr[0] = HRComp2;
}
}
} else if (initHrQueCounter < 7) { /* before que is filled up, display whatever it got. */
*HRbpm2 = HRComp2;
} else {
// *HRbpm2 = 0 ;
HrCount = 0;
HrSum = 0;
for (k = 0 ; k < 10 ; k++) {
if (lastKnownGoodHr[k] > 0) {
HrSum = HrSum + lastKnownGoodHr[k];
HrCount++;
}
}
if (HrCount > 0) {
*HRbpm2 = HrSum / HrCount;
} else {
*HRbpm2 = 0;
}
}
prevPeakLoc = peakLoc ; /* save peakLoc into Static var */
if (compSpO2) {
rnum = (ir_avg_reg >> 20) * (*red_ac_mag);
rden = (red_avg_reg >> 20) * (*ir_ac_mag);
rdens = (rden >> 15);
if (rdens > 0) {
cSpO2 = 110 - (((25 * rnum) / (rdens)) >> 15);
}
if (cSpO2 >= 100) {
SpO2 = 100;
} else if (cSpO2 <= 70) {
SpO2 = 70;
} else {
SpO2 = cSpO2;
}
SPO2Que[SPO2QueCounter ] = SpO2;
for (k = 0 ; k < 5 ; k++) {
SPO2score[k] = 0;
for (j = 0 ; j < 5 ; j++)
if (abs(SPO2Que[k] - SPO2Que[j]) > 5) {
SPO2score[k] ++;
}
}
SPO2scoreSum = 0;
for (k = 0 ; k < 5 ; k++) {
SPO2scoreSum += SPO2score[k] ;
}
SPO2scoreAverage = SPO2scoreSum / 5;
for (k = 1 ; k < 5 ; k++) {
SPO2score[k] = SPO2score[k] - SPO2scoreAverage;
}
validSPO2Count = 0;
validSPO2Sum = 0;
for (k = 1 ; k < 5 ; k++) {
if (SPO2score[k] <= 0) { // add for HR to report
validSPO2Sum += SPO2Que[k];
validSPO2Count ++;
}
}
if (validSPO2Count > 0) {
SPO2D = (validSPO2Sum / validSPO2Count) - 1;
}
if (SPO2D > 100) {
SPO2D = 100;
}
SPO2QueCounter ++;
if (SPO2QueCounter == 5) {
SPO2QueCounter = 0;
}
for (k = 1 ; k < 3 ; k++) {
SPO2QueSmoothing[3 - k] = SPO2QueSmoothing[2 - k];
}
SPO2QueSmoothing[0] = SPO2D;
*SpO2B = ((SPO2QueSmoothing[0] << 2) + (SPO2QueSmoothing[1] << 1) + (SPO2QueSmoothing[2] << 1)) >> 3;
if (*SpO2B > 100) {
*SpO2B = 100 ;
}
} else {
SpO2 = 0;
*SpO2B = 0;
}
*DRdy = 1;
}
}
/* Detect IR channel negative zero crossing (falling edge) */
if ((green_ac_sig_pre > 0) && (green_ac_sig_cur <= 0)) {
ir_pedge = 0;
ir_nedge = 1;
ir_ac_sig_min = 0;
ir_nzxic = ns;
}
/* Find Maximum IR & Red values in positive cycle */
if (ir_pedge && (green_ac_sig_cur > green_ac_sig_pre)) {
ir_ac_sig_max = ir_ac_sig_cur;
red_ac_sig_max = red_ac_sig_cur;
green_ac_sig_max = green_ac_sig_cur;
}
/* Find minimum IR & Red values in negative cycle */
if (ir_nedge && (green_ac_sig_cur < green_ac_sig_pre)) {
ir_ac_sig_min = ir_ac_sig_cur;
red_ac_sig_min = red_ac_sig_cur;
green_ac_sig_min = green_ac_sig_cur;
}
if (IRData < 50000) {
// finger-off
fingerOff++;
*DRdy = 0;
} else {
fingerOff = 0 ;
}
if (*SpO2B == 0 || *HRbpm2 == 0) {
*DRdy = 0;
}
}
/*
* Average DC Estimator
*/
uint16_t avg_dc_est(int32_t *p, uint16_t x)
{
*p += ((((int32_t) x << 15) - *p) >> 4);
return (*p >> 15);
}
/*
* Symmetric Dual Low Pass FIR Filter
*/
void lp_dfir_flt(int16_t din0, int16_t din1, int16_t din2, int16_t *dout0, int16_t *dout1, int16_t *dout2)
{
static const uint16_t FIRCoeffs[12] = {688, 1283, 2316, 3709, 5439, 7431,
9561, 11666, 13563, 15074, 16047, 16384
};
static int16_t cbuf0[32], cbuf1[32], cbuf2[32];
static int16_t offset = 0;
int32_t y0, y1, y2;
int16_t i;
cbuf0[offset] = din0;
cbuf1[offset] = din1;
cbuf2[offset] = din2;
y0 = mul16(FIRCoeffs[11], cbuf0[(offset - 11) & 0x1F]);
y1 = mul16(FIRCoeffs[11], cbuf1[(offset - 11) & 0x1F]);
y2 = mul16(FIRCoeffs[11], cbuf2[(offset - 11) & 0x1F]);
for (i = 0; i < 11; i++) {
y0 += mul16(FIRCoeffs[i], cbuf0[(offset - i) & 0x1F] + cbuf0[(offset - 22 + i) & 0x1F]);
y1 += mul16(FIRCoeffs[i], cbuf1[(offset - i) & 0x1F] + cbuf1[(offset - 22 + i) & 0x1F]);
y2 += mul16(FIRCoeffs[i], cbuf2[(offset - i) & 0x1F] + cbuf2[(offset - 22 + i) & 0x1F]);
}
offset = (offset + 1) & 0x1F;
*dout0 = (y0 >> 15);
*dout1 = (y1 >> 15);
*dout2 = (y2 >> 15);
}
/*
* Integer multiplier
*/
int32_t mul16(int16_t x, int16_t y)
{
return (int32_t)(x * y);
}