Host software for the MAXREFDES220 Heart Rate Monitor Smart Sensor. Hosted on the MAX32630FTHR.

Dependencies:   max32630fthr USBDevice

Fork of MAXREFDES220_HEART_RATE_MONITOR by Maxim Integrated

Finger Heart Rate Monitor and SpO2 Monitor

The MAXREFDES220 Smart Sensor FeatherWing board is a integrated solution for providing finger-based heart rate measurements and SpO2 (blood oxygen saturation). This evaluation board interfaces to the host computer using the I2C interface. Heart rate outpu is available in beats per minute (BPM) and SpO2 is reported in percentages.; the PPG (photoplethysmography) raw data is also available. The board has an MAX30101 chip which is a low power heart rate monitor with adjustable sample rates and adjustable LED currents. The low cost MAX32664 microcontroller is pre-flashed with C code for finger-based pulse rate and SpO2 monitoring. Bootloader software is included to allow for future algorithms or updates to the algorithm from Maxim Integrated.

Ordering information will be available soon.

Note: SpO2 values are not calibrated. Calibration should be performed using the final end product.

Warning

The MAXREFDES220 source code listed is dated and only compatible with the 1.2.8a.msbl. The latest sample host source code is available on the MAX32664 website.

MAXREFDES220 FeatherWing Pinout Connections

/media/uploads/phonemacro/maxrefdes220_pinouts_heart_rate_monitor.jpg

Interfaces/SmartSensor/SSInterface.cpp

Committer:
keremsahin
Date:
2018-07-02
Revision:
8:0f55f59ca341
Parent:
7:3e2a5545f1d8
Child:
10:022b2cad9e9b

File content as of revision 8:0f55f59ca341:

/***************************************************************************
* Copyright (C) 2017 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
****************************************************************************
*/

#include "SSInterface.h"
#include "Peripherals.h"
#include "assert.h"
#include "utils.h"
#include "i2cm.h"



SSInterface::SSInterface(I2C &i2cBus, PinName ss_mfio, PinName ss_reset)
	:m_i2cBus(&i2cBus), m_spiBus(NULL),
	mfio_pin(ss_mfio), reset_pin(ss_reset), irq_pin(ss_mfio)/*,
	irq_evt(1000000, "irq")*/
{
	reset_pin.input();
	irq_pin.fall(callback(this, &SSInterface::irq_handler));

	reset_to_main_app();
	get_data_type(&data_type, &sc_en);
}

SSInterface::SSInterface(SPI &spiBus, PinName ss_mfio, PinName ss_reset)
	:m_i2cBus(NULL), m_spiBus(&spiBus),
	mfio_pin(ss_mfio), reset_pin(ss_reset), irq_pin(ss_mfio)/*,
	irq_evt(1000000, "irq")*/
{
	reset_pin.input();
	irq_pin.fall(callback(this, &SSInterface::irq_handler));

	reset_to_main_app();
	get_data_type(&data_type, &sc_en);
}

SSInterface::~SSInterface()
{
}

SS_STATUS SSInterface::reset_to_main_app()
{
	disable_irq();
#if defined(BOOTLOADER_USES_MFIO)
	reset_pin.output();
	cfg_mfio(PIN_OUTPUT);
	reset_pin.write(0);
	wait_ms(SS_RESET_TIME);
	mfio_pin.write(1);
	reset_pin.write(1);
	wait_ms(SS_STARTUP_TO_MAIN_APP_TIME);
	cfg_mfio(PIN_INPUT);
	reset_pin.input();
	enable_irq();
	// Verify we exited bootloader mode
	if (in_bootldr_mode() == 0)
		return SS_SUCCESS;
	else
		return SS_ERR_UNKNOWN;
#else
	SS_STATUS status = exit_from_bootloader();
	enable_irq();
	return status;
#endif
}

SS_STATUS SSInterface::reset_to_bootloader()
{
	disable_irq();
#if defined(BOOTLOADER_USES_MFIO)
	reset_pin.output();
	cfg_mfio(PIN_OUTPUT);
	reset_pin.write(0);
	wait_ms(SS_RESET_TIME);
	mfio_pin.write(0);
	reset_pin.write(1);
	wait_ms(SS_STARTUP_TO_BTLDR_TIME);
	cfg_mfio(PIN_INPUT);
	reset_pin.input();
	enable_irq();
	stay_in_bootloader();

	// Verify we entered bootloader mode
	if (in_bootldr_mode() < 0)
		return SS_ERR_UNKNOWN;
	return SS_SUCCESS;
#else
	stay_in_bootloader();
	enable_irq();
	return SS_SUCCESS;
#endif
}

SS_STATUS SSInterface::exit_from_bootloader()
{
	uint8_t cmd_bytes[] = { SS_FAM_W_MODE, SS_CMDIDX_MODE };
	uint8_t data[] = { 0x00 };

	SS_STATUS status = write_cmd(
			&cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
			&data[0], ARRAY_SIZE(data));

	in_bootldr = (status == SS_SUCCESS) ? true : false;
	return status;
}

SS_STATUS SSInterface::stay_in_bootloader()
{
	uint8_t cmd_bytes[] = { SS_FAM_W_MODE, SS_CMDIDX_MODE };
	uint8_t data[] = { SS_MASK_MODE_BOOTLDR };

	SS_STATUS status = write_cmd(
			&cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
			&data[0], ARRAY_SIZE(data));

	in_bootldr = (status == SS_SUCCESS) ? true : false;
	return status;
}

SS_STATUS SSInterface::reset()
{
	int bootldr = in_bootldr_mode();
	if (bootldr > 0)
		return reset_to_bootloader();
	else if (bootldr == 0)
		return reset_to_main_app();
	else
		return SS_ERR_UNKNOWN;
}

SS_STATUS SSInterface::self_test(int idx, uint8_t *result, int sleep_ms){
    uint8_t cmd_bytes[] = { SS_FAM_R_SELFTEST, (uint8_t)idx };
    uint8_t rxbuf[2];
    SS_STATUS ret;

	result[0] = 0xFF;
	ret = read_cmd(cmd_bytes, 2, (uint8_t *)0, 0, rxbuf, ARRAY_SIZE(rxbuf), sleep_ms);
	result[0] = rxbuf[1];
	return ret;
}

void SSInterface::cfg_mfio(PinDirection dir)
{
	if (dir == PIN_INPUT) {
		mfio_pin.input();
		mfio_pin.mode(PullUp);
	} else {
		disable_irq();
		mfio_pin.output();
	}
}

void SSInterface::enable_irq()
{
	irq_pin.enable_irq();
}
void SSInterface::disable_irq()
{
	irq_pin.disable_irq();
}

void SSInterface::mfio_selftest(){
	disable_irq();
	irq_pin.fall(callback(this, &SSInterface::irq_handler_selftest));
	enable_irq();
}

int SSInterface::in_bootldr_mode()
{
	uint8_t cmd_bytes[] = { SS_FAM_R_MODE, SS_CMDIDX_MODE };
	uint8_t rxbuf[2] = { 0 };

	SS_STATUS status = read_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
			0, 0,
			&rxbuf[0], ARRAY_SIZE(rxbuf));
	if (status != SS_SUCCESS)
		return -1;

	return (rxbuf[1] & SS_MASK_MODE_BOOTLDR);
}

const char* SSInterface::get_ss_fw_version()
{
    uint8_t cmd_bytes[2];
    uint8_t rxbuf[4];

	int bootldr = in_bootldr_mode();

	if (bootldr > 0) {
		cmd_bytes[0] = SS_FAM_R_BOOTLOADER;
		cmd_bytes[1] = SS_CMDIDX_BOOTFWVERSION;
	} else if (bootldr == 0) {
		cmd_bytes[0] = SS_FAM_R_IDENTITY;
		cmd_bytes[1] = SS_CMDIDX_FWVERSION;
	} else {
		return plat_name;
	}

    SS_STATUS status = read_cmd(
             &cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
             0, 0,
             &rxbuf[0], ARRAY_SIZE(rxbuf));

    if (status == SS_SUCCESS) {
        snprintf(fw_version, sizeof(fw_version),
            "%d.%d.%d", rxbuf[1], rxbuf[2], rxbuf[3]);
		pr_info("fw_version:%s\r\n", fw_version);
    }

    return &fw_version[0];
}

const char* SSInterface::get_ss_algo_version()
{
    uint8_t cmd_bytes[3];
    uint8_t rxbuf[4];

	int bootldr = in_bootldr_mode();

	if (bootldr > 0) {
		cmd_bytes[0] = SS_FAM_R_BOOTLOADER;
		cmd_bytes[1] = SS_CMDIDX_BOOTFWVERSION;
		cmd_bytes[2] = 0;
	} else if (bootldr == 0) {
		cmd_bytes[0] = SS_FAM_R_IDENTITY;
		cmd_bytes[1] = SS_CMDIDX_ALGOVER;
		cmd_bytes[2] = SS_CMDIDX_AVAILSENSORS;
	} else {
		return plat_name;
	}

    SS_STATUS status = read_cmd(
             &cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
             0, 0,
             &rxbuf[0], ARRAY_SIZE(rxbuf));

    if (status == SS_SUCCESS) {
        snprintf(algo_version, sizeof(algo_version),
            "%d.%d.%d", rxbuf[1], rxbuf[2], rxbuf[3]);
		pr_info("algo_version:%s\r\n", fw_version);
    }

    return &algo_version[0];
}
const char* SSInterface::get_ss_platform_name()
{
    uint8_t cmd_bytes[] = { SS_FAM_R_IDENTITY, SS_CMDIDX_PLATTYPE };
    uint8_t rxbuf[2];

    SS_STATUS status = read_cmd(
            &cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
            0, 0,
            &rxbuf[0], ARRAY_SIZE(rxbuf));

    if (status == SS_SUCCESS) {
        if (rxbuf[1] == SS_PLAT_MAX3263X) {
			if (in_bootldr_mode() > 0) {
				plat_name = SS_BOOTLOADER_PLATFORM_MAX3263X;
			} else {
	            plat_name = SS_PLATFORM_MAX3263X;
			}
        } else if (rxbuf[1] == SS_PLAT_MAX32660) {
			if (in_bootldr_mode() > 0) {
				plat_name = SS_BOOTLOADER_PLATFORM_MAX32660;
			} else {
            	plat_name = SS_PLATFORM_MAX32660;
			}
        }
    }

    return plat_name;
}

SS_STATUS SSInterface::write_cmd(uint8_t *cmd_bytes, int cmd_bytes_len,
	uint8_t *data, int data_len,
    int sleep_ms)
{
    int total_len = data_len + cmd_bytes_len;

    if (total_len <= SS_SMALL_BUF_SIZE) {
        return write_cmd_small(cmd_bytes, cmd_bytes_len, data, data_len, sleep_ms);
    } else if (total_len <= SS_MED_BUF_SIZE) {
        return write_cmd_medium(cmd_bytes, cmd_bytes_len, data, data_len, sleep_ms);
    } else if (total_len <= SS_LARGE_BUF_SIZE) {
        return write_cmd_large(cmd_bytes, cmd_bytes_len, data, data_len, sleep_ms);
    } else {
        assert_msg(true, "Tried to send I2C tx larger than maximum allowed size\n");
        return SS_ERR_DATA_FORMAT; 
    }
}

SS_STATUS SSInterface::write_cmd(uint8_t *tx_buf, int tx_len, int sleep_ms)
{
	pr_info("write_cmd: ");
	for (int i = 0; i < tx_len; i++) {
		pr_info("0x%02X ", tx_buf[i]);
	}
	pr_info("\r\n");

    int ret = m_i2cBus->write(SS_I2C_8BIT_SLAVE_ADDR, (char*)tx_buf, tx_len);

	int retries = 4;
	while (ret != 0 && retries-- > 0) {
		pr_err("i2c wr retry\r\n");
		wait_ms(1);
    	ret = m_i2cBus->write(SS_I2C_8BIT_SLAVE_ADDR, (char*)tx_buf, tx_len);	    
	}

    if (ret != 0) {
    	pr_err("m_i2cBus->write returned %d\r\n", ret);
        return SS_ERR_UNAVAILABLE;
    }

    wait_ms(sleep_ms);

    char status_byte;
    ret = m_i2cBus->read(SS_I2C_8BIT_SLAVE_ADDR, &status_byte, 1);
	bool try_again = (status_byte == SS_ERR_TRY_AGAIN);
	while ((ret != 0 || try_again) 
			&& retries-- > 0) {
		pr_info("i2c rd retry\r\n");
		wait_ms(sleep_ms);
    	ret = m_i2cBus->read(SS_I2C_8BIT_SLAVE_ADDR, &status_byte, 1);
		try_again = (status_byte == SS_ERR_TRY_AGAIN);
	}

    if (ret != 0 || try_again) {
    	pr_err("m_i2cBus->read returned %d, ss status_byte %d\r\n", ret, status_byte);
        return SS_ERR_UNAVAILABLE;
    }

	pr_info("status_byte: %d\r\n", status_byte);

	return (SS_STATUS)status_byte;
}

SS_STATUS SSInterface::write_cmd_small(uint8_t *cmd_bytes, int cmd_bytes_len,
                       uint8_t *data, int data_len,
                       int sleep_ms)
{
    uint8_t write_buf[SS_SMALL_BUF_SIZE];
    memcpy(write_buf, cmd_bytes, cmd_bytes_len);
    memcpy(write_buf + cmd_bytes_len, data, data_len);

	SS_STATUS status = write_cmd(write_buf, cmd_bytes_len + data_len, sleep_ms);
	return status;
}

SS_STATUS SSInterface::write_cmd_medium(uint8_t *cmd_bytes, int cmd_bytes_len,
                       uint8_t *data, int data_len,
                       int sleep_ms)
{
    uint8_t write_buf[SS_MED_BUF_SIZE];
    memcpy(write_buf, cmd_bytes, cmd_bytes_len);
    memcpy(write_buf + cmd_bytes_len, data, data_len);

	SS_STATUS status = write_cmd(write_buf, cmd_bytes_len + data_len, sleep_ms);
	return status;
}

SS_STATUS SSInterface::write_cmd_large(uint8_t *cmd_bytes, int cmd_bytes_len,
                       uint8_t *data, int data_len,
                       int sleep_ms)
{
    uint8_t write_buf[SS_LARGE_BUF_SIZE];
    memcpy(write_buf, cmd_bytes, cmd_bytes_len);
    memcpy(write_buf + cmd_bytes_len, data, data_len);

	SS_STATUS status = write_cmd(write_buf, cmd_bytes_len + data_len, sleep_ms);
	return status;
}

SS_STATUS SSInterface::read_cmd(uint8_t *cmd_bytes, int cmd_bytes_len,
	uint8_t *data, int data_len,
	uint8_t *rxbuf, int rxbuf_sz,
    int sleep_ms)
{
	pr_info("read_cmd: ");
	for (int i = 0; i < cmd_bytes_len; i++) {
		pr_info("0x%02X ", cmd_bytes[i]);
	}
	pr_info("\r\n");


	int retries = 4;

    int ret = m_i2cBus->write(SS_I2C_8BIT_SLAVE_ADDR, (char*)cmd_bytes, cmd_bytes_len, (data_len != 0));
    printf("ret1 : %d\rt\n",ret);
    if (data_len != 0) {
        ret |= m_i2cBus->write(SS_I2C_8BIT_SLAVE_ADDR, (char*)data, data_len, false);
        printf("ret2 : %d\rt\n",ret);
    }

	while (ret != 0 && retries-- > 0) {

		pr_err("i2c wr retry\r\n");
		wait_ms(1);
    	ret = m_i2cBus->write(SS_I2C_8BIT_SLAVE_ADDR, (char*)cmd_bytes, cmd_bytes_len, (data_len != 0));
    	printf("ret3 : %d\rt\n",ret);
	    if (data_len != 0) {
	        ret |= m_i2cBus->write(SS_I2C_8BIT_SLAVE_ADDR, (char*)data, data_len, false);
	        printf("ret4 : %d\rt\n",ret);
	    }
	}

    if (ret != 0) {
    	pr_err("m_i2cBus->write returned %d\r\n", ret);
        return SS_ERR_UNAVAILABLE;
    }

    wait_ms(sleep_ms);

    ret = m_i2cBus->read(SS_I2C_8BIT_SLAVE_ADDR, (char*)rxbuf, rxbuf_sz);
	bool try_again = (rxbuf[0] == SS_ERR_TRY_AGAIN);
	while ((ret != 0 || try_again) && retries-- > 0) {
		pr_info("i2c rd retry\r\n");
		wait_ms(sleep_ms);
    	ret = m_i2cBus->read(SS_I2C_8BIT_SLAVE_ADDR, (char*)rxbuf, rxbuf_sz);
		try_again = (rxbuf[0] == SS_ERR_TRY_AGAIN);
	}
    if (ret != 0 || try_again) {
    	pr_err("m_i2cBus->read returned %d, ss status_byte %d\r\n", ret, rxbuf[0]);
        return SS_ERR_UNAVAILABLE;
    }

	pr_info("status_byte: %d\r\n", rxbuf[0]);
	pr_info("data: ");
	for (int i = 1; i < rxbuf_sz; i++) {
		pr_info("0x%02X ", rxbuf[i]);
	}
	pr_info("\r\n");

    return (SS_STATUS)rxbuf[0];
}

SS_STATUS SSInterface::get_reg(int idx, uint8_t addr, uint32_t *val)
{
	assert_msg((idx <= SS_MAX_SUPPORTED_SENSOR_NUM), "idx must be < SS_MAX_SUPPORTED_SENSOR_NUM, or update code to handle variable length idx values");

	uint8_t cmd_bytes[] = { SS_FAM_R_REGATTRIBS, (uint8_t)idx };
	uint8_t rx_reg_attribs[3] = {0};

	SS_STATUS status = read_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
								0, 0,
								&rx_reg_attribs[0], ARRAY_SIZE(rx_reg_attribs));

	if (status != SS_SUCCESS)
		return status;

	int reg_width = rx_reg_attribs[1];

	uint8_t cmd_bytes2[] = { SS_FAM_R_READREG, (uint8_t)idx, addr };
	uint8_t rxbuf[5] = {0};

	status = read_cmd(&cmd_bytes2[0], ARRAY_SIZE(cmd_bytes2),
						0, 0,
						&rxbuf[0], reg_width + 1);

	if (status == SS_SUCCESS) {
		*val = 0;
		for (int i = 0; i < reg_width; i++) {
			*val = (*val << 8) | rxbuf[i + 1];
		}
	}

	return status;
}

SS_STATUS SSInterface::set_reg(int idx, uint8_t addr, uint32_t val, int byte_size)
{
	assert_msg((idx <= SS_MAX_SUPPORTED_SENSOR_NUM), "idx must be < SS_MAX_SUPPORTED_SENSOR_NUM, or update code to handle variable length idx values");

	uint8_t cmd_bytes[] = { SS_FAM_W_WRITEREG, (uint8_t)idx, addr };
	uint8_t data_bytes[4];
	for (int i = 0; i < byte_size; i++) {
		data_bytes[i] = (val >> (8 * (byte_size - 1)) & 0xFF);
	}

	SS_STATUS status = write_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
								&data_bytes[0], byte_size);

	return status;
}

SS_STATUS SSInterface::dump_reg(int idx, addr_val_pair* reg_vals, int reg_vals_sz, int* num_regs)
{
	assert_msg((idx <= SS_MAX_SUPPORTED_SENSOR_NUM), "idx must be < SS_MAX_SUPPORTED_SENSOR_NUM, or update code to handle variable length idx values");

	uint8_t cmd_bytes[] = { SS_FAM_R_REGATTRIBS, (uint8_t)idx };
	uint8_t rx_reg_attribs[3] = {0};

	SS_STATUS status = read_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
								0, 0,
								&rx_reg_attribs[0], ARRAY_SIZE(rx_reg_attribs));

	if (status != SS_SUCCESS)
		return status;

	int reg_width = rx_reg_attribs[1];
	*num_regs = rx_reg_attribs[2];
	assert_msg((*num_regs <= reg_vals_sz), "Need to increase reg_vals array to hold all dump_reg data");
	assert_msg(((size_t)reg_width <= sizeof(uint32_t)), "IC returned register values greater than 4 bytes in width");

	int dump_reg_sz = (*num_regs) * (reg_width + 1) + 1; //+1 to reg_width for address, +1 for status byte

	uint8_t rxbuf[512];
	assert_msg(((size_t)dump_reg_sz <= sizeof(rxbuf)), "Need to increase buffer size to receive dump_reg data");

	cmd_bytes[0] = SS_FAM_R_DUMPREG;
	status = read_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
								0, 0,
								&rxbuf[0], dump_reg_sz, SS_DUMP_REG_SLEEP_MS);

	if (status != SS_SUCCESS)
		return status;

	//rxbuf format is [status][addr0](reg_width x [val0])[addr1](reg_width x [val1])...
	for (int reg = 0; reg < *num_regs; reg++) {
		reg_vals[reg].addr = rxbuf[(reg * (reg_width + 1)) + 1];
		uint32_t *val = &(reg_vals[reg].val);
		*val = 0;
		for (int byte = 0; byte < reg_width; byte++) {
			*val = (*val << 8) | rxbuf[(reg * (reg_width + 1)) + byte + 2];
		}
	}

	return SS_SUCCESS;
}

SS_STATUS SSInterface::enable_sensor(int idx, int mode, ss_data_req *data_req)
{
	assert_msg((idx <= SS_MAX_SUPPORTED_SENSOR_NUM), "idx must be < SS_MAX_SUPPORTED_SENSOR_NUM, or update code to handle variable length idx values");
	assert_msg((mode <= SS_MAX_SUPPORTED_MODE_NUM), "mode must be < SS_MAX_SUPPORTED_MODE_NUM, or update code to handle variable length mode values");
	assert_msg((mode != 0), "Tried to enable sensor to mode 0, but mode 0 is disable");


	uint8_t cmd_bytes[] = { SS_FAM_W_SENSORMODE, (uint8_t)idx, (uint8_t)mode };

	SS_STATUS status = write_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes), 0, 0, SS_ENABLE_SENSOR_SLEEP_MS);

	if (status == SS_SUCCESS) {
		sensor_enabled_mode[idx] = mode;
		sensor_data_reqs[idx] = data_req;
	}
	return status;
}

SS_STATUS SSInterface::disable_sensor(int idx)
{
	assert_msg((idx <= SS_MAX_SUPPORTED_SENSOR_NUM), "idx must be < SS_MAX_SUPPORTED_SENSOR_NUM, or update code to handle variable length idx values");
	uint8_t cmd_bytes[] = { SS_FAM_W_SENSORMODE, (uint8_t)idx, 0 };

	SS_STATUS status = write_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes), 0, 0, SS_ENABLE_SENSOR_SLEEP_MS);

	if (status == SS_SUCCESS) {
		sensor_enabled_mode[idx] = 0;
		sensor_data_reqs[idx] = 0;
	}

	return status;
}

SS_STATUS SSInterface::enable_algo(int idx, int mode, ss_data_req *data_req)
{
	assert_msg((idx <= SS_MAX_SUPPORTED_ALGO_NUM), "idx must be < SS_MAX_SUPPORTED_ALGO_NUM, or update code to handle variable length idx values");
	assert_msg((mode <= SS_MAX_SUPPORTED_MODE_NUM), "mode must be < SS_MAX_SUPPORTED_MODE_NUM, or update code to handle variable length mode values");
	assert_msg((mode != 0), "Tried to enable algo to mode 0, but mode 0 is disable");

	uint8_t cmd_bytes[] = { SS_FAM_W_ALGOMODE, (uint8_t)idx, (uint8_t)mode };

	SS_STATUS status = write_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes), 0, 0, 4*SS_ENABLE_SENSOR_SLEEP_MS);

	if (status == SS_SUCCESS) {
		algo_enabled_mode[idx] = mode;
		algo_data_reqs[idx] = data_req;
	}

	return status;
}

SS_STATUS SSInterface::disable_algo(int idx)
{
	assert_msg((idx <= SS_MAX_SUPPORTED_ALGO_NUM), "idx must be < SS_MAX_SUPPORTED_ALGO_NUM, or update code to handle variable length idx values");
	uint8_t cmd_bytes[] = { SS_FAM_W_ALGOMODE, (uint8_t)idx, 0 };

	SS_STATUS status = write_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes), 0, 0, SS_ENABLE_SENSOR_SLEEP_MS);

	if (status == SS_SUCCESS) {
		algo_enabled_mode[idx] = 0;
		algo_data_reqs[idx] = 0;
	}

	return status;
}

SS_STATUS SSInterface::set_algo_cfg(int algo_idx, int cfg_idx, uint8_t *cfg, int cfg_sz)
{
	assert_msg((algo_idx <= SS_MAX_SUPPORTED_ALGO_NUM), "idx must be < SS_MAX_SUPPORTED_ALGO_NUM, or update code to handle variable length idx values");
	assert_msg((cfg_idx <= SS_MAX_SUPPORTED_ALGO_CFG_NUM), "idx must be < SS_MAX_SUPPORTED_ALGO_CFG_NUM, or update code to handle variable length idx values");

	uint8_t cmd_bytes[] = { SS_FAM_W_ALGOCONFIG, (uint8_t)algo_idx, (uint8_t)cfg_idx };
	SS_STATUS status = write_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
								 cfg, cfg_sz);

	return status;
}

SS_STATUS SSInterface::get_algo_cfg(int algo_idx, int cfg_idx, uint8_t *cfg, int cfg_sz)
{
	assert_msg((algo_idx <= SS_MAX_SUPPORTED_ALGO_NUM), "idx must be < SS_MAX_SUPPORTED_ALGO_NUM, or update code to handle variable length idx values");
	assert_msg((cfg_idx <= SS_MAX_SUPPORTED_ALGO_CFG_NUM), "idx must be < SS_MAX_SUPPORTED_ALGO_CFG_NUM, or update code to handle variable length idx values");

	uint8_t cmd_bytes[] = { SS_FAM_R_ALGOCONFIG, (uint8_t)algo_idx, (uint8_t)cfg_idx };
	SS_STATUS status = read_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
								0, 0,
								cfg, cfg_sz);

	return status;
}

SS_STATUS SSInterface::set_data_type(int data_type, bool sc_en)
{
	assert_msg((data_type >= 0) && (data_type <= 3), "Invalid value for data_type");
	uint8_t cmd_bytes[] = { SS_FAM_W_COMMCHAN, SS_CMDIDX_OUTPUTMODE };
	uint8_t data_bytes[] = { (uint8_t)((sc_en ? SS_MASK_OUTPUTMODE_SC_EN : 0) |
							((data_type << SS_SHIFT_OUTPUTMODE_DATATYPE) & SS_MASK_OUTPUTMODE_DATATYPE)) };

	SS_STATUS status = write_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
								&data_bytes[0], ARRAY_SIZE(data_bytes));

	this->data_type = data_type;
	this->sc_en = sc_en;

	return status;
}


SS_STATUS SSInterface::get_data_type(int *data_type, bool *sc_en)
{
	uint8_t cmd_bytes[] = { SS_FAM_R_COMMCHAN, SS_CMDIDX_OUTPUTMODE };
	uint8_t rxbuf[2] = {0};

	SS_STATUS status = read_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
								0, 0,
								&rxbuf[0], ARRAY_SIZE(rxbuf));
	if (status == SS_SUCCESS) {
		*data_type =
			(rxbuf[1] & SS_MASK_OUTPUTMODE_DATATYPE) >> SS_SHIFT_OUTPUTMODE_DATATYPE;
		*sc_en =
			(bool)((rxbuf[1] & SS_MASK_OUTPUTMODE_SC_EN) >> SS_SHIFT_OUTPUTMODE_SC_EN);
	}

	return status;
}

SS_STATUS SSInterface::set_fifo_thresh(int thresh)
{
	assert_msg((thresh > 0 && thresh <= 255), "Invalid value for fifo a full threshold");
	uint8_t cmd_bytes[] = { SS_FAM_W_COMMCHAN, SS_CMDIDX_FIFOAFULL };
	uint8_t data_bytes[] = { (uint8_t)thresh };

	SS_STATUS status = write_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
								&data_bytes[0], ARRAY_SIZE(data_bytes));
	return status;
}

SS_STATUS SSInterface::get_fifo_thresh(int *thresh)
{
	uint8_t cmd_bytes[] = { SS_FAM_R_COMMCHAN, SS_CMDIDX_FIFOAFULL };
	uint8_t rxbuf[2] = {0};

	SS_STATUS status = read_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
								0, 0,
								&rxbuf[0], ARRAY_SIZE(rxbuf));

	if (status == SS_SUCCESS) {
		*thresh = rxbuf[1];
	}

	return status;
}

SS_STATUS SSInterface::ss_comm_check()
{
	uint8_t cmd_bytes[] = { SS_FAM_R_IDENTITY, SS_CMDIDX_PLATTYPE };
	uint8_t rxbuf[2];

	SS_STATUS status = read_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
								0, 0,
								&rxbuf[0], ARRAY_SIZE(rxbuf));

	int tries = 4;
	while (status == SS_ERR_TRY_AGAIN && tries--) {
		wait_ms(1000);
		status = read_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
							0, 0,
							&rxbuf[0], ARRAY_SIZE(rxbuf));
	}

	return status;
}

void SSInterface::fifo_sample_size(int data_type, int *sample_size)
{
	*sample_size = 0;

	if (data_type == SS_DATATYPE_RAW || data_type == SS_DATATYPE_BOTH) {
		for (int i = 0; i < SS_MAX_SUPPORTED_SENSOR_NUM; i++) {
			if (sensor_enabled_mode[i]) {
				assert_msg(sensor_data_reqs[i], "no ss_data_req found for enabled sensor");
				*sample_size += sensor_data_reqs[i]->data_size;
			}
		}
	}

	if (data_type == SS_DATATYPE_ALGO || data_type == SS_DATATYPE_BOTH) {
		for (int i = 0; i < SS_MAX_SUPPORTED_ALGO_NUM; i++) {
			if (algo_enabled_mode[i]) {
				assert_msg(algo_data_reqs[i], "no ss_data_req found for enabled algo");
				*sample_size += algo_data_reqs[i]->data_size;
			}
		}
	}
}

SS_STATUS SSInterface::num_avail_samples(int *num_samples)
{
	uint8_t cmd_bytes[] = { SS_FAM_R_OUTPUTFIFO, SS_CMDIDX_OUT_NUMSAMPLES };
	uint8_t rxbuf[2] = {0};

	SS_STATUS status = read_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
								0, 0,
								&rxbuf[0], ARRAY_SIZE(rxbuf), 1);

	if (status == SS_SUCCESS) {
		*num_samples = rxbuf[1];
	}

	return status;
}

SS_STATUS SSInterface::get_log_len(int *log_len)
{
	uint8_t cmd_bytes[] = { SS_FAM_R_LOG, SS_CMDIDX_R_LOG_LEN };
	uint8_t rxbuf[2] = {0};

	SS_STATUS status = read_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
								0, 0,
								&rxbuf[0], ARRAY_SIZE(rxbuf), 1);

	if (status == SS_SUCCESS) {
		*log_len = (rxbuf[1] << 8) | rxbuf[0];
	}

	return status;
}

SS_STATUS SSInterface::read_fifo_data(
	int num_samples, int sample_size,
	uint8_t* databuf, int databuf_sz)
{
	int bytes_to_read = num_samples * sample_size + 1; //+1 for status byte
	assert_msg((bytes_to_read <= databuf_sz), "databuf too small");

	uint8_t cmd_bytes[] = { SS_FAM_R_OUTPUTFIFO, SS_CMDIDX_READFIFO };

	pr_info("[reading %d bytes (%d samples)\r\n", bytes_to_read, num_samples);

	SS_STATUS status = read_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
								0, 0,
								databuf, bytes_to_read, 5);

	return status;
}

SS_STATUS SSInterface::read_ss_log(int num_bytes, uint8_t *log_buf, int log_buf_sz)
{
	int bytes_to_read = num_bytes + 1; //+1 for status byte
	assert_msg((bytes_to_read <= log_buf_sz), "log_buf too small");

	uint8_t cmd_bytes[] = { SS_FAM_R_LOG, SS_CMDIDX_R_LOG_DATA };

	pr_info("[reading %d bytes (%d samples)\r\n", bytes_to_read, bytes_to_read);

	SS_STATUS status = read_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
								0, 0,
								log_buf, bytes_to_read, 5);

	return status;
}

static uint8_t databuf[512];
void SSInterface::ss_execute_once(){

	if(m_irq_received_ == false)
		return;

	uint8_t sample_count;
	m_irq_received_ = false;
	uint8_t cmd_bytes[] = { SS_FAM_R_STATUS, SS_CMDIDX_STATUS };
	uint8_t rxbuf[2] = {0};

	//irq_evt.start();

	disable_irq();

	SS_STATUS status = read_cmd(&cmd_bytes[0], ARRAY_SIZE(cmd_bytes),
								0, 0,
								&rxbuf[0], ARRAY_SIZE(rxbuf));
	pr_info("ss_int: %2X", rxbuf[1]);

	if (status != SS_SUCCESS) {
		pr_err("Couldn't read status byte of SmartSensor!");
		enable_irq();
		//irq_evt.stop();
		return;
	}

	if (rxbuf[1] & SS_MASK_STATUS_ERR) {
		pr_err("SmartSensor status error: %d", rxbuf[1] & SS_MASK_STATUS_ERR);
	}
	if (rxbuf[1] & SS_MASK_STATUS_FIFO_OUT_OVR) {
		pr_err("SmartSensor Output FIFO overflow!");
	}
	if (rxbuf[1] & SS_MASK_STATUS_FIFO_IN_OVR) {
		pr_err("SmartSensor Input FIFO overflow!");
	}

	if (rxbuf[1] & SS_MASK_STATUS_LOG_OVR) {
		pr_err("SmartSensor log overflow!");
	}

	if (rxbuf[1] & SS_MASK_STATUS_LOG_RDY) {
		pr_err("SmartSensor Log ready");
		int log_len;
		status = get_log_len(&log_len);
		if (status != SS_SUCCESS)
		{
			pr_err("Couldn't read log lenght");
			enable_irq();
			//irq_evt.stop();
			return;
		}

		assert_msg((log_len <= sizeof(databuf)), "log size in SS longer than buffer");
		status = read_ss_log(log_len, &databuf[0], sizeof(databuf));
		if (status != SS_SUCCESS)
		{
			pr_err("Couldn't read from SmartSensor Log");
			enable_irq();
			//irq_evt.stop();
			return;
		}

		databuf[log_len] = 0;
		Peripherals::usbSerial()->printf("\r\n%s", (char *)databuf);
	}

	if (rxbuf[1] & SS_MASK_STATUS_DATA_RDY) {
		int num_samples = 1;
		status = num_avail_samples(&num_samples);
		if (status != SS_SUCCESS)
		{
			pr_err("Couldn't read number of available samples in SmartSensor Output FIFO");
			enable_irq();
			//irq_evt.stop();
			return;
		}

		int sample_size;
		fifo_sample_size(data_type, &sample_size);

		int bytes_to_read = num_samples * sample_size + 1; //+1 for status byte
		if ((uint32_t)bytes_to_read > sizeof(databuf)) {
			//Reduce number of samples to read to fit in buffer
			num_samples = (sizeof(databuf) - 1) / sample_size;
		}

		wait_ms(5);
		status = read_fifo_data(num_samples, sample_size, &databuf[0], sizeof(databuf));
		if (status != SS_SUCCESS)
		{
			pr_err("Couldn't read from SmartSensor Output FIFO");
			enable_irq();
			//irq_evt.stop();
			return;
		}

		//Skip status byte
		uint8_t *data_ptr = &databuf[1];

		int i = 0;
		for (i = 0; i < num_samples; i++) {
			if (sc_en) {
				sample_count = *data_ptr++;
				pr_info("Received sample #%d", sample_count);
			}
				
			//Chop up data and send to modules with enabled sensors
			if (data_type == SS_DATATYPE_RAW || data_type == SS_DATATYPE_BOTH) {
				for (int i = 0; i < SS_MAX_SUPPORTED_SENSOR_NUM; i++) {
					if (sensor_enabled_mode[i]) {
						assert_msg(sensor_data_reqs[i], 
								"no ss_data_req found for enabled sensor");
						sensor_data_reqs[i]->callback(data_ptr);
						data_ptr += sensor_data_reqs[i]->data_size;
					}
				}
			}
			if (data_type == SS_DATATYPE_ALGO || data_type == SS_DATATYPE_BOTH) {
				for (int i = 0; i < SS_MAX_SUPPORTED_ALGO_NUM; i++) {
					if (algo_enabled_mode[i]) {
						assert_msg(algo_data_reqs[i], 
								"no ss_data_req found for enabled algo");
						algo_data_reqs[i]->callback(data_ptr);
						data_ptr += algo_data_reqs[i]->data_size;
					}
				}
			}
		}
	}
	enable_irq();
	//irq_evt.stop();
}

void SSInterface::ss_clear_interrupt_flag(){
	m_irq_received_ = false;
}

void SSInterface::irq_handler()
{
	m_irq_received_ = true;
}

void SSInterface::irq_handler_selftest(){
	mfio_int_happened = true;
}

bool SSInterface::reset_mfio_irq(){
	bool ret = mfio_int_happened;
	mfio_int_happened = false;
	disable_irq();
	irq_pin.fall(callback(this, &SSInterface::irq_handler));
	enable_irq();
	return ret;
}