HSP Platform firmware evaluating ECG data and hearth rate over PPG data.
Dependencies: max32630fthr Adafruit_FeatherOLED USBDevice
Interfaces/SensorComm/TempComm/TempComm.cpp
- Committer:
- phonemacro
- Date:
- 2021-03-25
- Revision:
- 4:682a4ebb995a
- Parent:
- 1:f60eafbf009a
File content as of revision 4:682a4ebb995a:
/***************************************************************************
* Copyright (C) 2017 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
****************************************************************************
*/
#include <ctype.h>
#include "TempComm.h"
#include "mxc_errors.h"
#include "MAX30205.h"
#include "CRC8.h"
#include "Peripherals.h"
#include "utils.h"
#include "BLE_ICARUS.h"
#define TP_REG_COUNT 64
#define MINIMUM_PERIOD_SECOND 0.5
const char *cmd_tbl_tp[] = {
"get_format temp 0",
"read temp 0", /* raw */
"set_cfg temp sr", //set sample rate
"get_reg temp",
"set_reg temp",
"dump_reg temp",
};
TempComm::TempComm(USBSerial* USB):
SensorComm("temp", true)
{
m_USB = USB;
TempComm_Set_ReadTempStatus(false);
ticker_period_second_ = MINIMUM_PERIOD_SECOND;
sampling_period_ms_ = MINIMUM_PERIOD_SECOND * 1000;
}
void TempComm::stop()
{
int ret;
comm_mutex.lock();
data_report_mode = 0;
comm_mutex.unlock();
ret = sensor->sensor_enable(0);
m_tempcomm_ticker_.detach();
TempComm_Set_ReadTempStatus(false);
if (ret < 0) {
pr_err("sensor_enable failed. ret: %d", ret);
}
}
bool TempComm::parse_command(const char* cmd)
{
int i;
int ret = EXIT_SUCCESS;
uint8_t reg_addr;
uint16_t val;
bool recognizedCmd = false;
int data_len = 0;
char charbuf[512];
addr_val_pair reg_vals[TP_REG_COUNT];
bool comma;
if (sensor == NULL) {
pr_err("sensor object is invalid!");
return false;
}
for (i = 0; i < NUM_CMDS; i++) {
if (starts_with(cmd, cmd_tbl_tp[i])) {
cmd_state_t user_cmd = (cmd_state_t)i;
recognizedCmd = true;
switch (user_cmd) {
case get_tp_format_mode0:
if(AsciiEn)
{
m_USB->printf("\r\n%s format=smpleCnt,temp err=0\r\n",
cmd);
}
else
{
data_len = snprintf(charbuf, sizeof(charbuf), "\r\n%s enc=bin cs=1 format={smpleCnt,8},{temp,16,2} err=0\r\n",
cmd);
m_USB->printf(charbuf);
}
break;
case read_tp_mode0:
comm_mutex.lock();
data_report_mode = read_tp_mode0;
comm_mutex.unlock();
sample_count = 0;
ret = sensor->sensor_enable(1);
if (ret < 0) {
pr_err("sensor_enable failed. ret: %d\r\n", ret);
}
m_tempcomm_ticker_.detach();
m_tempcomm_ticker_.attach(callback(this,&TempComm::TempComm_Set_ReadTempStatus_Ticker), ticker_period_second_);
data_len = snprintf(charbuf, sizeof(charbuf), "\r\n%s err=%d\r\n", cmd, ret);
m_USB->printf(charbuf);
break;
case set_cfg_sr:
ret = (parse_cmd_data(cmd, cmd_tbl_tp[i], &sampling_period_ms_, 1, false) != 1);
if (ret) {
data_len = snprintf(charbuf, sizeof(charbuf), "\r\n%s err=%d\r\n", cmd, -1);
m_USB->printf(charbuf);
break;
}
ticker_period_second_ = sampling_period_ms_/ 1000.0;
if(ticker_period_second_ < MINIMUM_PERIOD_SECOND){
pr_err("minimum value is less than 0.5\r\n");
sampling_period_ms_ = MINIMUM_PERIOD_SECOND * 1000;
ticker_period_second_ = MINIMUM_PERIOD_SECOND;
ret = -1;
}
data_len = snprintf(charbuf, sizeof(charbuf), "\r\n%s err=%d\r\n", cmd, ret);
m_USB->printf(charbuf);
break;
case get_reg:
reg_addr = 0;
val = 0;
ret = parse_get_reg_cmd(cmd, sensor_type, ®_addr);
if (!ret) {
ret = ((MAX30205*)sensor)->readRegister(static_cast<MAX30205::Registers_e> (reg_addr), val);
}
reg_vals[0].addr = reg_addr;
reg_vals[0].val = val;
InsertRegValuesIntoBleQeueu(reg_vals, 1);
data_len = snprintf(charbuf, sizeof(charbuf), "\r\n%s reg_val=%02X err=%d\r\n", cmd, val, ret);
m_USB->printf(charbuf);
break;
case set_reg:
ret = parse_set_reg_cmd(cmd, sensor_type, ®_addr, &val);
if (!ret) {
ret = ((MAX30205*)sensor)->writeRegister(static_cast<MAX30205::Registers_e> (reg_addr), val);
}
data_len = snprintf(charbuf, sizeof(charbuf), "\r\n%s err=%d\r\n", cmd, ret);
m_USB->printf(charbuf);
break;
case dump_regs:
for (int i = 0; i < TP_REG_COUNT; i++) {
reg_vals[i].addr = 0xFF;
}
ret = sensor->dump_registers(reg_vals);
if (ret) {
m_USB->printf("\r\n%s err=%d\n", cmd, ret);
data_len = snprintf(charbuf, sizeof(charbuf), "\r\n%s err=%d\n", cmd, ret);
}
else {
data_len = snprintf(charbuf, sizeof(charbuf), "\r\n%s reg_val=", cmd);
comma = false;
for (int i = 0; i < TP_REG_COUNT; i++) {
if(reg_vals[i].addr == 0xFF)
break;
if (comma) {
data_len += snprintf(charbuf + data_len,
sizeof(charbuf) - data_len - 1, ",");
}
data_len += snprintf(charbuf + data_len,
sizeof(charbuf) - data_len - 1,
"{%X,%X}", (unsigned int)reg_vals[i].addr, (unsigned int)reg_vals[i].val);
comma = true;
}
data_len += snprintf(charbuf + data_len, sizeof(charbuf) - data_len - 1, " err=0\r\n");
m_USB->printf(charbuf);
}
break;
default:
break;
}
if (BLE::Instance().gap().getState().connected) {
BLE_Icarus_AddtoQueue((uint8_t *)charbuf, (int32_t)sizeof(charbuf), data_len);
}
}
}
return recognizedCmd;
}
int TempComm::data_report_execute(char* buf, int size)
{
int16_t data_len = 0;
uint8_t tmp_report_mode;
uint16_t tp_val;
uint32_t ret;
uint32_t tp_val_ext;
float Celsius;
tp0_comm_packet *data_packet;
if (sensor == NULL)
return 0;
if(!is_enabled())
return 0;
comm_mutex.lock();
tmp_report_mode = data_report_mode;
comm_mutex.unlock();
switch(tmp_report_mode) {
case read_tp_mode0:
if ( (m_can_read_temp_) ) {
TempComm_Set_ReadTempStatus(false);
ret = ((MAX30205*)sensor)->readTemperature(tp_val);
if (ret != 0)
return 0;
tp_val_ext = (uint32_t)tp_val;
Celsius = ((MAX30205*)sensor)->toCelsius(tp_val_ext);
tp_val = Celsius*100;
TempComm_instant_temp_celsius = Celsius;
if(AsciiEn)
{
data_len = snprintf(buf, size - 1,
"%lu,%2.3f\r\n",
sample_count++,
Celsius);
}
else{
data_packet = (tp0_comm_packet *)buf;
data_packet->start_byte = 0xAA;
data_packet->smpleCnt = sample_count++;
data_packet->tp = tp_val;
data_packet->crc8 = crc8((uint8_t*)data_packet, sizeof(*data_packet) - sizeof(uint8_t));
data_len = sizeof(*data_packet);
}
}
break;
default:
return 0;
}
if (data_len < 0) {
pr_err("snprintf buf failed");
} else if (data_len > size) {
pr_err("buffer is insufficient to hold data");
}
return data_len;
}
void TempComm::TempComm_Set_ReadTempStatus(bool en){
m_can_read_temp_ = en;
}
void TempComm::TempComm_Set_ReadTempStatus_Ticker(){
m_can_read_temp_ = true;
}