initial commit, reads dev id
MAX8614X_agc.cpp
- Committer:
- phonemacro
- Date:
- 2018-08-17
- Revision:
- 5:1f7b8cb07e26
File content as of revision 5:1f7b8cb07e26:
/*******************************************************************************
* Author: Ismail Kose, Ismail.Kose@maximintegrated.com
* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*******************************************************************************
*/
#include "MAX8614X.h"
#include <errno.h>
#define pr_err(fmt, args...) if(1) printf(fmt " (%s:%d)\n", ##args, __func__, __LINE__)
#define pr_info(fmt, args...) if(1) printf(fmt " (%s:%d)\n", ##args, __func__, __LINE__)
#define pr_debug(fmt, args...) if(0) printf(fmt " (%s:%d)\n", ##args, __func__, __LINE__)
#define ARRAY_SIZE(array) (sizeof(array)/sizeof(array[0]))
#define ILLEGAL_OUTPUT_POINTER 1
#define ILLEGAL_DIODE_OUTPUT_MIN_MAX_PAIR 2
#define ILLEGAL_LED_SETTING_MIN_MAX_PAIR 3
#define CONSTRAINT_VIOLATION 4
#define MAX8614X_LED_DRIVE_CURRENT_FULL_SCALE \
(MAX8614X_MAX_LED_DRIVE_CURRENT - MAX8614X_MIN_LED_DRIVE_CURRENT)
#define MAX8614X_AGC_DEFAULT_LED_OUT_RANGE 15
#define MAX8614X_AGC_DEFAULT_CORRECTION_COEFF 50
#define MAX8614X_AGC_DEFAULT_SENSITIVITY_PERCENT 10
#define MAX8614X_AGC_DEFAULT_NUM_SAMPLES_TO_AVG 25
#define MAX8614X_PROX_THRESHOLD_1 10000
#define MAX8614X_PROX_THRESHOLD_2 40000
#define MAX8614X_PROX_DEBOUNCE_SPS 2
#define MAX8614X_DAQ_DEBOUNCE_SPS 20
#define MAX8614X_DEFAULT_DAQ_LED_CURRENT_1 40000
#define MAX8614X_DEFAULT_DAQ_LED_CURRENT_2 40000
#define MAX8614X_DEFAULT_DAQ_LED_CURRENT_3 40000
#define MAX8614X_DEFAULT_PROX_LED_CURRENT_1 10000
#define MAX8614X_DEFAULT_PROX_LED_CURRENT_2 0
#define MAX8614X_DEFAULT_PROX_LED_CURRENT_3 0
#define MAX8614X_MIN_LED_DRIVE_CURRENT 0
#define MAX8614X_MAX_LED_DRIVE_CURRENT 60000
#define MAX8614X_MAX_PPG_DIODE_VAL ((1 << 19) - 1)
#define MAX8614X_MIN_PPG_DIODE_VAL 0
#define MAX8614X_DEFAULT_CURRENT1 0x30
#define MAX8614X_DEFAULT_CURRENT2 0
#define MAX8614X_DEFAULT_CURRENT3 0
int MAX8614X::max8614x_update_led_range(
int new_range, uint8_t led_num,
union led_range *led_range_settings)
{
int old_range;
Registers reg_addr;
switch (led_num) {
case LED_1:
old_range = led_range_settings->led1;
led_range_settings->led1 = new_range;
reg_addr = MAX8614X_LED_RANGE1_REG;
break;
case LED_2:
old_range = led_range_settings->led2;
led_range_settings->led2 = new_range;
reg_addr = MAX8614X_LED_RANGE1_REG;
break;
case LED_3:
old_range = led_range_settings->led3;
led_range_settings->led3 = new_range;
reg_addr = MAX8614X_LED_RANGE1_REG;
break;
case LED_4:
old_range = led_range_settings->led4;
led_range_settings->led4 = new_range;
reg_addr = MAX8614X_LED_RANGE2_REG;
break;
case LED_5:
old_range = led_range_settings->led5;
led_range_settings->led5 = new_range;
reg_addr = MAX8614X_LED_RANGE2_REG;
break;
case LED_6:
old_range = led_range_settings->led6;
led_range_settings->led6 = new_range;
reg_addr = MAX8614X_LED_RANGE2_REG;
break;
default:
return -EINVAL;
}
if (old_range == new_range)
return 0;
return writeRegister( reg_addr,
led_range_settings->val[led_num < LED_4 ? 0 : 1]);
}
int MAX8614X::max8614x_update_led_current(
union led_range *led_range_settings,
int led_new_val,
max8614x_led_t led_num)
{
int ret = 0;
Registers led_current_reg_addr;
int led_range;
uint8_t led_current_reg_val;
int led_range_index = led_new_val / 25000;
const int led_range_steps[] = {
LED_RANGE_STEP_25uA,
LED_RANGE_STEP_50uA,
LED_RANGE_STEP_75uA,
LED_RANGE_STEP_100uA,
LED_RANGE_STEP_100uA, /* For led current greater than 100uA */
};
switch(led_num) {
case LED_1:
led_current_reg_addr = MAX8614X_LED1_PA_REG;
break;
case LED_2:
led_current_reg_addr = MAX8614X_LED2_PA_REG;
break;
case LED_3:
led_current_reg_addr = MAX8614X_LED3_PA_REG;
break;
case LED_4:
led_current_reg_addr = MAX8614X_LED4_PA_REG;
break;
case LED_5:
led_current_reg_addr = MAX8614X_LED5_PA_REG;
break;
case LED_6:
led_current_reg_addr = MAX8614X_LED6_PA_REG;
break;
default:
pr_err("Invalid led number: %d\n", led_num);
return -EINVAL;
}
if (led_new_val < MAX8614X_MIN_LED_DRIVE_CURRENT
|| led_new_val > MAX8614X_MAX_LED_DRIVE_CURRENT) {
pr_err("Invalid led value: %d\n", led_new_val);
return -EINVAL;
}
led_current_reg_val = led_new_val / led_range_steps[led_range_index];
pr_debug("Updating LED%d current to %d. led_rge_idx: %d, reg_val: %.2X",
led_num, led_new_val, led_range_index, led_current_reg_val);
ret = writeRegister(led_current_reg_addr, led_current_reg_val);
if (ret < 0)
return ret;
led_range = led_range_index;
pr_debug("Updating LED%d range to %d.", led_num, led_range);
if (led_range > 3)
led_range = 3;
ret = max8614x_update_led_range( led_range, led_num, led_range_settings);
if (ret < 0)
return ret;
return ret;
}
int32_t agc_adj_calculator(
int32_t *change_by_percent_of_range,
int32_t *change_by_percent_of_current_setting,
int32_t *change_led_by_absolute_count,
int32_t *set_led_to_absolute_count,
int32_t target_percent_of_range,
int32_t correction_coefficient,
int32_t allowed_error_in_percentage,
int32_t current_average,
int32_t number_of_samples_averaged,
int32_t led_drive_current_value)
{
int32_t current_percent_of_range = 0;
int32_t delta = 0;
int32_t desired_delta = 0;
int32_t current_power_percent = 0;
if (change_by_percent_of_range == 0
|| change_by_percent_of_current_setting == 0
|| change_led_by_absolute_count == 0
|| set_led_to_absolute_count == 0)
return ILLEGAL_OUTPUT_POINTER;
if (target_percent_of_range > 90 || target_percent_of_range < 10)
return CONSTRAINT_VIOLATION;
if (correction_coefficient > 100 || correction_coefficient < 0)
return CONSTRAINT_VIOLATION;
if (allowed_error_in_percentage > 100
|| allowed_error_in_percentage < 0)
return CONSTRAINT_VIOLATION;
#if ((MAX8614X_MAX_PPG_DIODE_VAL - MAX8614X_MIN_PPG_DIODE_VAL) <= 0 \
|| (MAX8614X_MAX_PPG_DIODE_VAL < 0) || (MAX8614X_MIN_PPG_DIODE_VAL < 0))
#error "Illegal diode Min/Max Pair"
#endif
#if ((MAX8614X_MAX_LED_DRIVE_CURRENT - MAX8614X_MIN_LED_DRIVE_CURRENT) <= 0 \
|| (MAX8614X_MAX_LED_DRIVE_CURRENT < 0) || (MAX8614X_MIN_LED_DRIVE_CURRENT < 0))
#error "Illegal LED Min/Max current Pair"
#endif
if (led_drive_current_value > MAX8614X_MAX_LED_DRIVE_CURRENT
|| led_drive_current_value < MAX8614X_MIN_LED_DRIVE_CURRENT)
return CONSTRAINT_VIOLATION;
if (current_average < MAX8614X_MIN_PPG_DIODE_VAL
|| current_average > MAX8614X_MAX_PPG_DIODE_VAL)
return CONSTRAINT_VIOLATION;
current_percent_of_range = 100 *
(current_average - MAX8614X_MIN_PPG_DIODE_VAL) /
(MAX8614X_MAX_PPG_DIODE_VAL - MAX8614X_MIN_PPG_DIODE_VAL) ;
delta = current_percent_of_range - target_percent_of_range;
delta = delta * correction_coefficient / 100;
if (delta > -allowed_error_in_percentage
&& delta < allowed_error_in_percentage) {
*change_by_percent_of_range = 0;
*change_by_percent_of_current_setting = 0;
*change_led_by_absolute_count = 0;
*set_led_to_absolute_count = led_drive_current_value;
return 0;
}
current_power_percent = 100 *
(led_drive_current_value - MAX8614X_MIN_LED_DRIVE_CURRENT) /
(MAX8614X_MAX_LED_DRIVE_CURRENT - MAX8614X_MIN_LED_DRIVE_CURRENT);
if (delta < 0)
desired_delta = -delta * (100 - current_power_percent) /
(100 - current_percent_of_range);
if (delta > 0)
desired_delta = -delta * (current_power_percent)
/ (current_percent_of_range);
*change_by_percent_of_range = desired_delta;
*change_led_by_absolute_count = (desired_delta
* MAX8614X_LED_DRIVE_CURRENT_FULL_SCALE / 100);
*change_by_percent_of_current_setting =
(*change_led_by_absolute_count * 100)
/ (led_drive_current_value);
*set_led_to_absolute_count = led_drive_current_value
+ *change_led_by_absolute_count;
//If we are saturated, cut power in half
if (current_percent_of_range >= 100)
{
*change_by_percent_of_range = -100; //Unknown, set fake value
*change_by_percent_of_current_setting = -50;
*change_led_by_absolute_count = 0 - (led_drive_current_value / 2);
*set_led_to_absolute_count = led_drive_current_value / 2;
}
return 0;
}
void MAX8614X::ppg_auto_gain_ctrl(
struct led_control *led_ctrl,
uint32_t sample_cnt, int diode_data, max8614x_led_t led_num)
{
int ret;
int diode_avg;
if (led_num > LED_3) /* TODO: why3? */
return;
led_ctrl->diode_sum[led_num] += diode_data;
if (sample_cnt % led_ctrl->agc_min_num_samples == 0) {
diode_avg = led_ctrl->diode_sum[led_num]
/ led_ctrl->agc_min_num_samples;
led_ctrl->diode_sum[led_num] = 0;
} else
return;
ret = agc_adj_calculator(
&led_ctrl->change_by_percent_of_range[led_num],
&led_ctrl->change_by_percent_of_current_setting[led_num],
&led_ctrl->change_led_by_absolute_count[led_num],
&led_ctrl->led_current[led_num],
led_ctrl->agc_led_out_percent,
led_ctrl->agc_corr_coeff,
led_ctrl->agc_sensitivity_percent,
diode_avg,
led_ctrl->agc_min_num_samples,
led_ctrl->led_current[led_num]);
if (ret)
return;
if (led_ctrl->change_led_by_absolute_count[led_num] == 0)
return;
ret = max8614x_update_led_current(&led_ctrl->led_range_settings,
led_ctrl->led_current[led_num], led_num);
if (ret < 0)
pr_err("%s failed", __func__);
return;
}
void MAX8614X::max8614x_agc_handler(struct led_control *led_ctrl,
int *samples)
{
static int ret = -1;
if (!led_ctrl->agc_is_enabled)
return;
led_ctrl->sample_cnt++;
ret = led_control_sm(led_ctrl,
samples[DATA_TYPE_PPG1_LEDC1],
led_ctrl->lpm_is_enabled);
if (ret == LED_DATA_ACQ) {
ppg_auto_gain_ctrl(led_ctrl,
led_ctrl->sample_cnt,
samples[DATA_TYPE_PPG1_LEDC1],
LED_1);
ppg_auto_gain_ctrl(led_ctrl,
led_ctrl->sample_cnt,
samples[DATA_TYPE_PPG1_LEDC2],
LED_2);
ppg_auto_gain_ctrl(led_ctrl,
led_ctrl->sample_cnt,
samples[DATA_TYPE_PPG1_LEDC3],
LED_3);
}
return;
}
int MAX8614X::led_prox_init(struct led_control *led_ctrl, char lpm)
{
int ret;
const RegisterMap low_pm_settings[] = {
{ MAX8614X_PPG_CFG1_REG, MAX8614X_PPG_LED_PW_115_2_US_MASK // PPG_LED_PW = 3 (115.2us)
| MAX8614X_PPG1_ADC_RGE_32768_MASK // PPG1_ADC_RGE = 3(32768nA)
| MAX8614X_PPG2_ADC_RGE_32768_MASK }, // PPG2_ADC_RGE = 3(32768nA)
{ MAX8614X_PPG_CFG2_REG, MAX8614X_PPG_SR_25_SPS},
{ MAX8614X_INT_ENABLE1_REG, MAX8614X_INT1_EN_DATA_RDY_MASK },
};
led_ctrl->led_current[LED_1] = MAX8614X_DEFAULT_PROX_LED_CURRENT_1;
ret = max8614x_update_led_current(&led_ctrl->led_range_settings,
led_ctrl->led_current[LED_1], LED_1);
led_ctrl->led_current[LED_2] = MAX8614X_DEFAULT_PROX_LED_CURRENT_2;
ret |= max8614x_update_led_current(&led_ctrl->led_range_settings,
led_ctrl->led_current[LED_2], LED_2);
led_ctrl->led_current[LED_3] = MAX8614X_DEFAULT_PROX_LED_CURRENT_3;
ret |= max8614x_update_led_current(&led_ctrl->led_range_settings,
led_ctrl->led_current[LED_3], LED_3);
if (lpm)
ret |= writeBlock(low_pm_settings,
ARRAY_SIZE(low_pm_settings));
return ret;
}
int MAX8614X::led_daq_init(struct led_control *led_ctrl, char lpm)
{
int ret;
const RegisterMap non_lpm_settings[] = {
{ MAX8614X_PPG_CFG1_REG, MAX8614X_PPG_LED_PW_115_2_US_MASK // PPG_LED_PW = 3 (115.2us)
| MAX8614X_PPG1_ADC_RGE_32768_MASK // PPG1_ADC_RGE = 3(32768nA)
| MAX8614X_PPG2_ADC_RGE_32768_MASK }, // PPG2_ADC_RGE = 3(32768nA)
{ MAX8614X_PPG_CFG2_REG, MAX8614X_PPG_SR_100_SPS},
{ MAX8614X_INT_ENABLE1_REG, MAX8614X_INT1_EN_A_FULL_MASK },
};
led_ctrl->led_current[LED_1] = MAX8614X_DEFAULT_DAQ_LED_CURRENT_1;
ret = max8614x_update_led_current(&led_ctrl->led_range_settings,
led_ctrl->led_current[LED_1], LED_1);
led_ctrl->led_current[LED_2] = MAX8614X_DEFAULT_DAQ_LED_CURRENT_2;
ret |= max8614x_update_led_current(&led_ctrl->led_range_settings,
led_ctrl->led_current[LED_2], LED_2);
led_ctrl->led_current[LED_3] = MAX8614X_DEFAULT_DAQ_LED_CURRENT_3;
ret |= max8614x_update_led_current(&led_ctrl->led_range_settings,
led_ctrl->led_current[LED_3], LED_3);
if (lpm)
ret |= writeBlock(non_lpm_settings,
ARRAY_SIZE(non_lpm_settings));
return ret;
}
int MAX8614X::led_control_sm(struct led_control *led_ctrl, int diode_data, char lpm)
{
int ret = led_ctrl->state;
int avg = 0;
led_ctrl->prox_sample_cnt++;
led_ctrl->prox_sum += diode_data;
switch (led_ctrl->state) {
case LED_PROX:
if (led_ctrl->prox_sample_cnt % MAX8614X_PROX_DEBOUNCE_SPS != 0)
break;
avg = led_ctrl->prox_sum / MAX8614X_PROX_DEBOUNCE_SPS;
if (avg >= MAX8614X_PROX_THRESHOLD_1) {
led_ctrl->state = LED_DATA_ACQ;
ret = led_daq_init(led_ctrl, lpm);
led_ctrl->prox_sample_cnt = 0;
}
led_ctrl->prox_sum = 0;
break;
case LED_DATA_ACQ:
if (led_ctrl->prox_sample_cnt % MAX8614X_DAQ_DEBOUNCE_SPS != 0)
break;
avg = led_ctrl->prox_sum / MAX8614X_DAQ_DEBOUNCE_SPS;
if (avg <= MAX8614X_PROX_THRESHOLD_2) {
led_ctrl->state = LED_PROX;
ret = led_prox_init(led_ctrl, lpm);
led_ctrl->prox_sample_cnt = 0;
}
led_ctrl->prox_sum = 0;
break;
default:
led_ctrl->state = LED_PROX;
led_ctrl->prox_sum = 0;
led_ctrl->prox_sample_cnt = 0;
return -EINVAL;
}
return ret;
}
void MAX8614X::led_control_reset(struct led_control *led_ctrl)
{
led_ctrl->led_current[LED_1] = led_ctrl->default_current[LED_1];
led_ctrl->led_current[LED_2] = led_ctrl->default_current[LED_2];
led_ctrl->led_current[LED_3] = led_ctrl->default_current[LED_3];
memset(led_ctrl->change_by_percent_of_range, 0,
sizeof(led_ctrl->change_by_percent_of_range));
memset(led_ctrl->change_by_percent_of_current_setting, 0,
sizeof(led_ctrl->change_by_percent_of_range));
memset(led_ctrl->change_led_by_absolute_count, 0,
sizeof(led_ctrl->change_by_percent_of_range));
memset(led_ctrl->diode_sum, 0, sizeof(led_ctrl->diode_sum));
led_ctrl->agc_is_enabled = 1;
led_ctrl->prox_sum = 0;
led_ctrl->prox_sample_cnt = 0;
led_ctrl->sample_cnt = -1;
led_ctrl->state = LED_PROX;
}
void MAX8614X::led_control_init(struct led_control *led_ctrl)
{
memset(led_ctrl, 0, sizeof(struct led_control));
led_ctrl->default_current[LED_1] = MAX8614X_DEFAULT_CURRENT1;
led_ctrl->default_current[LED_2] = MAX8614X_DEFAULT_CURRENT2;
led_ctrl->default_current[LED_3] = MAX8614X_DEFAULT_CURRENT3;
led_ctrl->agc_led_out_percent = MAX8614X_AGC_DEFAULT_LED_OUT_RANGE;
led_ctrl->agc_corr_coeff = MAX8614X_AGC_DEFAULT_CORRECTION_COEFF;
led_ctrl->agc_min_num_samples = MAX8614X_AGC_DEFAULT_NUM_SAMPLES_TO_AVG;
led_ctrl->agc_sensitivity_percent = MAX8614X_AGC_DEFAULT_SENSITIVITY_PERCENT;
}