Simple demo of BMI160 Library (Accelerometer, Gyroscope)
Dependencies: mbed BMI160 max32630hsp2
Run the Code
- Import it into the mbed online compiler.
- Compile the program.
- It will automatically download the .bin file.
- Drag-drop or copy-paste the .bin file to the programmer drive. (PICO DAPLINK).
- Open a serial terminal (Putty, Tera Term, etc.)
- Find the COM port that the device is connected to and set that COM port in the terminal. Adjust the baudrate to 9600.
- Press the reset button on the microcontroller board.
- You should now see the accelerometer, gyroscope and temperature values on the terminal with 0.5-second intervals.
Information
The program can be compiled by IAR Embedded Workbench 7.5 ( IAR compiler 7.80.2) or older versions.
main.cpp
- Committer:
- Emre.Eken@IST-LT-36262.maxim-ic.internal
- Date:
- 2018-08-16
- Revision:
- 3:ad1e61509a89
- Parent:
- 2:ba0a55e05168
File content as of revision 3:ad1e61509a89:
/**********************************************************************
* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
**********************************************************************/
#include "mbed.h"
#include "bmi160.h"
#include "max32630hsp.h"
MAX32630HSP icarus(MAX32630HSP::VIO_3V3);
DigitalOut rLED(LED1, LED_OFF);
DigitalOut gLED(LED2, LED_OFF);
DigitalOut bLED(LED3, LED_OFF);
Serial pc(USBTX,USBRX);
I2C i2cBus(I2C2_SDA, I2C2_SCL);
BMI160_I2C imu(i2cBus, BMI160_I2C::I2C_ADRS_SDO_LO);
void dumpImuRegisters(BMI160 &imu);
void printRegister(BMI160 &imu, BMI160::Registers reg);
void printBlock(BMI160 &imu, BMI160::Registers startReg, BMI160::Registers stopReg);
int main()
{
i2cBus.frequency(400000);
pc.printf("\033[H"); //home
pc.printf("\033[0J"); //erase from cursor to end of screen
uint32_t failures = 0;
if(imu.setSensorPowerMode(BMI160::GYRO, BMI160::NORMAL) != BMI160::RTN_NO_ERROR)
{
pc.printf("Failed to set gyroscope power mode\r\n");
failures++;
}
wait_ms(100);
if(imu.setSensorPowerMode(BMI160::ACC, BMI160::NORMAL) != BMI160::RTN_NO_ERROR)
{
pc.printf("Failed to set accelerometer power mode\r\n");
failures++;
}
wait_ms(100);
BMI160::AccConfig accConfig;
//example of using getSensorConfig
if(imu.getSensorConfig(accConfig) == BMI160::RTN_NO_ERROR)
{
pc.printf("ACC Range = %d\r\n", accConfig.range);
pc.printf("ACC UnderSampling = %d\r\n", accConfig.us);
pc.printf("ACC BandWidthParam = %d\r\n", accConfig.bwp);
pc.printf("ACC OutputDataRate = %d\r\n\r\n", accConfig.odr);
}
else
{
pc.printf("Failed to get accelerometer configuration\r\n");
failures++;
}
//example of setting user defined configuration
accConfig.range = BMI160::SENS_4G;
accConfig.us = BMI160::ACC_US_OFF;
accConfig.bwp = BMI160::ACC_BWP_2;
accConfig.odr = BMI160::ACC_ODR_8;
if(imu.setSensorConfig(accConfig) == BMI160::RTN_NO_ERROR)
{
pc.printf("ACC Range = %d\r\n", accConfig.range);
pc.printf("ACC UnderSampling = %d\r\n", accConfig.us);
pc.printf("ACC BandWidthParam = %d\r\n", accConfig.bwp);
pc.printf("ACC OutputDataRate = %d\r\n\r\n", accConfig.odr);
}
else
{
pc.printf("Failed to set accelerometer configuration\r\n");
failures++;
}
BMI160::GyroConfig gyroConfig;
if(imu.getSensorConfig(gyroConfig) == BMI160::RTN_NO_ERROR)
{
pc.printf("GYRO Range = %d\r\n", gyroConfig.range);
pc.printf("GYRO BandWidthParam = %d\r\n", gyroConfig.bwp);
pc.printf("GYRO OutputDataRate = %d\r\n\r\n", gyroConfig.odr);
}
else
{
pc.printf("Failed to get gyroscope configuration\r\n");
failures++;
}
wait(1.0);
pc.printf("\033[H"); //home
pc.printf("\033[0J"); //erase from cursor to end of screen
if(failures == 0)
{
float imuTemperature;
BMI160::SensorData accData;
BMI160::SensorData gyroData;
BMI160::SensorTime sensorTime;
while(1)
{
imu.getGyroAccXYZandSensorTime(accData, gyroData, sensorTime, accConfig.range, gyroConfig.range);
imu.getTemperature(&imuTemperature);
pc.printf("ACC xAxis = %s%4.3f\r\n", "\033[K", accData.xAxis.scaled);
pc.printf("ACC yAxis = %s%4.3f\r\n", "\033[K", accData.yAxis.scaled);
pc.printf("ACC zAxis = %s%4.3f\r\n\r\n", "\033[K", accData.zAxis.scaled);
pc.printf("GYRO xAxis = %s%5.1f\r\n", "\033[K", gyroData.xAxis.scaled);
pc.printf("GYRO yAxis = %s%5.1f\r\n", "\033[K", gyroData.yAxis.scaled);
pc.printf("GYRO zAxis = %s%5.1f\r\n\r\n", "\033[K", gyroData.zAxis.scaled);
pc.printf("Sensor Time = %s%f\r\n", "\033[K", sensorTime.seconds);
pc.printf("Sensor Temperature = %s%5.3f\r\n", "\033[K", imuTemperature);
pc.printf("\033[H"); //home
gLED = !gLED;
wait(0.5);
}
}
else
{
while(1)
{
rLED = !rLED;
wait(0.25);
}
}
}
//*****************************************************************************
void dumpImuRegisters(BMI160 &imu)
{
printRegister(imu, BMI160::CHIP_ID);
printBlock(imu, BMI160::ERR_REG,BMI160::FIFO_DATA);
printBlock(imu, BMI160::ACC_CONF, BMI160::FIFO_CONFIG_1);
printBlock(imu, BMI160::MAG_IF_0, BMI160::SELF_TEST);
printBlock(imu, BMI160::NV_CONF, BMI160::STEP_CONF_1);
printRegister(imu, BMI160::CMD);
pc.printf("\r\n");
}
//*****************************************************************************
void printRegister(BMI160 &imu, BMI160::Registers reg)
{
uint8_t data;
if(imu.readRegister(reg, &data) == BMI160::RTN_NO_ERROR)
{
pc.printf("IMU Register 0x%02x = 0x%02x\r\n", reg, data);
}
else
{
pc.printf("Failed to read register\r\n");
}
}
//*****************************************************************************
void printBlock(BMI160 &imu, BMI160::Registers startReg, BMI160::Registers stopReg)
{
uint8_t numBytes = ((stopReg - startReg) + 1);
uint8_t buff[32];
uint8_t offset = static_cast<uint8_t>(startReg);
if(imu.readBlock(startReg, stopReg, buff) == BMI160::RTN_NO_ERROR)
{
for(uint8_t idx = offset; idx < (numBytes + offset); idx++)
{
pc.printf("IMU Register 0x%02x = 0x%02x\r\n", idx, buff[idx - offset]);
}
}
else
{
pc.printf("Failed to read block\r\n");
}
}