Example host software to display SpO2 or Heart Rate on wrist using the MAX32664GWEC or MAXREFDES101 with IR/Red LED board. It is recommended that the MAX32664 be loaded with the latest Maxim supplied algorithm (.msbl file).
Dependencies: Maxim_Sensor_Hub_Communications BMI160 demoUI max32630hsp3
Fork of Host_Software_MAX32664GWEC_SpO2_HR by
SHMAX8614X/SH_Max8614x_BareMetal.cpp
- Committer:
- gmehmet
- Date:
- 2019-01-03
- Revision:
- 12:9e3de2ece9c4
- Parent:
- 0:ddc2fef69ef9
File content as of revision 12:9e3de2ece9c4:
/*******************************************************************************
* Copyright (C) 2018 Maxim Integrated Products, Inc., All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
* Except as contained in this notice, the name of Maxim Integrated
* Products, Inc. shall not be used except as stated in the Maxim Integrated
* Products, Inc. Branding Policy.
*
* The mere transfer of this software does not imply any licenses
* of trade secrets, proprietary technology, copyrights, patents,
* trademarks, maskwork rights, or any other form of intellectual
* property whatsoever. Maxim Integrated Products, Inc. retains all
* ownership rights.
*******************************************************************************
*/
#include "SH_Max8614x_BareMetal.h"
#include "SHComm.h"
#include "HostAccelHelper.h"
#include <string.h> //for memset
#include <stdint.h>
uint16_t HrmResult = 0;
uint16_t SPO2Result = 0;
uint8_t HrmConfidence = 0;
uint8_t SPo2Confidence = 0;
#if defined(DEBUG_INFO)
#define __DBGMESSAGE( str , val ) {printf(str, val);}
#else
#define __DBGMESSAGE( str , val )
#endif
// Defines
#define SSMAX8614X_REG_SIZE 1
#define SSMAX8614X_MODE1_DATASIZE 18 //Taken from API doc
#define SSWHRM_MODE1_DATASIZE 6 //Taken from API doc
#define SSWSPO2_MODE1_DATASIZE 9 // added for wspo2
#define SSACCEL_MODE1_DATASIZE 6 //Taken from API doc
#define SSAGC_MODE1_DATASIZE 0 //Taken from API doc
#define SSBPT_MODE1_2_DATASIZE 4 //Taken from API doc /* TODO */
#define MIN_MACRO(a,b) ((a)<(b)?(a):(b))
// sensor configuration
//#define ENABLE_SENSOR_HUB_ACCEL
#define USE_HOST_ACCEL
// algorithm configuration
#define ENABLE_WHRM_AND_SP02
#define ENABLE_WSP02
// end of senor and algorithm configuration
#define MAX_NUM_WR_ACC_SAMPLES 5
#define BMI160_SAMPLE_RATE 25
// end of defines
//function pointer use to perform arithmetic operation
typedef void (*rx_data_callback)(uint8_t *);
typedef struct {
int data_size;
rx_data_callback rx_data_parser;
} ss_data_req;
typedef struct {
int16_t x;
int16_t y;
int16_t z;
} accel_mode1_data;
typedef struct {
uint32_t led1;
uint32_t led2;
uint32_t led3;
uint32_t led4;
uint32_t led5;
uint32_t led6;
} max8614x_mode1_data;
typedef struct {
uint16_t hr;
uint8_t hr_conf;
uint16_t spo2;
uint8_t status;
} whrm_mode1_data;
typedef struct { /// added for WSPO2
uint16_t r;
uint8_t spo2_conf;
uint16_t spo2;
uint8_t percentComplete;
uint8_t lowSignalQualityFlag;
uint8_t motionFlag;
uint8_t status; //isSpo2Calculated;
} wspo2_mode1_data;
typedef struct Max86140_SH_Status_Tracker {
uint8_t sensor_data_from_host;
uint8_t data_type_enabled; // what type of data is enabled
uint8_t sample_count_enabled; // does me11 provide sample count
uint32_t sample_count;
uint8_t data_buf_storage[512]; // store data read from SH
ss_data_req algo_callbacks[SH_NUM_CURRENT_ALGOS];
ss_data_req sensor_callbacks[SH_NUM_CURRENT_SENSORS];
uint8_t sensor_enabled_mode[SH_NUM_CURRENT_SENSORS];
uint8_t algo_enabled_mode[SH_NUM_CURRENT_ALGOS];
int input_fifo_size;
} Max86140_SH_Status_Tracker_t;
// Max8614x Default Callbacks
void max8614x_data_rx(uint8_t* data_ptr)
{
max8614x_mode1_data sample;
sample.led1 = (data_ptr[0] << 16) | (data_ptr[1] << 8) | data_ptr[2];
sample.led2 = (data_ptr[3] << 16) | (data_ptr[4] << 8) | data_ptr[5];
sample.led3 = (data_ptr[6] << 16) | (data_ptr[7] << 8) | data_ptr[8];
sample.led4 = (data_ptr[9] << 16) | (data_ptr[10] << 8) | data_ptr[11];
sample.led5 = (data_ptr[12] << 16) | (data_ptr[13] << 8) | data_ptr[14];
sample.led6 = (data_ptr[15] << 16) | (data_ptr[16] << 8) | data_ptr[17];
//printf("led1=%.6X led2=%.6X led3=%.6X led4=%.6X led5=%.6X led6=%.6X\r\n",
// sample.led1, sample.led2, sample.led3, sample.led4, sample.led5, sample.led6);
//enqueue(&max8614x_queue, &sample);
}
void whrm_data_rx(uint8_t* data_ptr) {
//See API doc for data format
whrm_mode1_data sample;
sample.hr = (data_ptr[0] << 8) | data_ptr[1];
sample.hr_conf = data_ptr[2];
sample.spo2 = (data_ptr[3] << 8) | data_ptr[4];
sample.status = data_ptr[5];
HrmResult = sample.hr / 10;
HrmConfidence = sample.hr_conf;
//printf("hr_c=%d\r\n", HrmResult);
#if defined(DEBUG_INFO)
printf("hr=%.1f conf=%d spo2=%d status=%d\r\n", (float)sample.hr / 10.0, sample.hr_conf, sample.spo2, sample.status);
#endif
//enqueue(&whrm_queue, &sample);
}
void wspo2_data_rx(uint8_t* data_ptr)
{
//See API doc for data format
wspo2_mode1_data sample;
sample.r = (data_ptr[0] << 8) | data_ptr[1]; // already x10
sample.spo2_conf = data_ptr[2];
sample.spo2 = (data_ptr[3] << 8) | data_ptr[4]; // already x10
sample.percentComplete = data_ptr[5];
sample.lowSignalQualityFlag = data_ptr[6];
sample.motionFlag = data_ptr[7];
sample.status = data_ptr[8];
SPO2Result = sample.spo2 / 10;
SPo2Confidence = sample.spo2_conf;
#if defined(DEBUG_INFO)
printf("r=%.1f SpO2Conf=%d SpO2=%.1f prcntComp=%d lowSig=%d motion=%d isCalc=%d\r\n", (float)sample.r / 10.0, sample.spo2_conf, (float)sample.spo2/10.0, sample.percentComplete, sample.lowSignalQualityFlag , sample.motionFlag, sample.status);
#endif
//enqueue(&wspo2_queue, &sample);
}
void accel_data_rx(uint8_t* data_ptr) {
//See API doc for data format
accel_mode1_data sample;
sample.x = (data_ptr[0] << 8) | data_ptr[1];
sample.y = (data_ptr[2] << 8) | data_ptr[3];
sample.z = (data_ptr[4] << 8) | data_ptr[5];
//printf("x:%d, y:%d, z:%d\r\n", sample.x, sample.y, sample.z);
}
void agc_data_rx(uint8_t* data_ptr) {
//NOP: AGC does not collect data
}
// end of Max8614x Default Callbacks
static Max86140_SH_Status_Tracker * get_config_struct() {
/* assigns a static adress to configuration struct*/
static Max86140_SH_Status_Tracker glbl_max8614x_status_track;
return &glbl_max8614x_status_track;
}
void initialize_config_struct() {
Max86140_SH_Status_Tracker *p_glbl_max8614x_status_track = get_config_struct();
/*
* Desc: Configuration init flow, Perform this action at init stage of data acquisition. Raw sesnsor data buffer pointer is input to each
* enabled sensor/algorithm,s funtion that is responsible to extract numeric data from data byte stream from sensor hub.
*
* - Append Sensor Raw Data structure with raw sensor data sample size and pointer to function of sensor that is reposible to parse
* data byte stream from sesnor hub and extract sensor numeric data.
* - Append accompanying sensors to main state of sensor. ie Accelerometer from Host with sensor data sample size and pointer to function of
* sensor that is reposible to parse data byte stream from sesnor hub and extract sensor numeric data.
* - Append algorithms to be enabled with algorithm data sample size and pointer to function of
* algorithm that is reposible to parse data byte stream from sensor hub and extract sensor numeric data.
*
* */
//set all the values to 0
memset(p_glbl_max8614x_status_track, 0, sizeof(*p_glbl_max8614x_status_track));
// max8614x
p_glbl_max8614x_status_track->sensor_callbacks[SH_SENSORIDX_MAX8614X].data_size = SSMAX8614X_MODE1_DATASIZE;
p_glbl_max8614x_status_track->sensor_callbacks[SH_SENSORIDX_MAX8614X].rx_data_parser = &max8614x_data_rx;
// accelerometer
p_glbl_max8614x_status_track->sensor_callbacks[SH_SENSORIDX_ACCEL].data_size = SSACCEL_MODE1_DATASIZE;
p_glbl_max8614x_status_track->sensor_callbacks[SH_SENSORIDX_ACCEL].rx_data_parser = &accel_data_rx;
// agc
p_glbl_max8614x_status_track->algo_callbacks[SH_ALGOIDX_AGC].data_size = SSAGC_MODE1_DATASIZE;
p_glbl_max8614x_status_track->algo_callbacks[SH_ALGOIDX_AGC].rx_data_parser = &agc_data_rx;
// whrm
p_glbl_max8614x_status_track->algo_callbacks[SH_ALGOIDX_WHRM].data_size = SSWHRM_MODE1_DATASIZE;
p_glbl_max8614x_status_track->algo_callbacks[SH_ALGOIDX_WHRM].rx_data_parser = &whrm_data_rx;
// spo2
p_glbl_max8614x_status_track->algo_callbacks[SH_ALGOIDX_WSPO2].data_size = SSWSPO2_MODE1_DATASIZE;
p_glbl_max8614x_status_track->algo_callbacks[SH_ALGOIDX_WSPO2].rx_data_parser = &wspo2_data_rx;
}
void SH_Max8614x_get_reg(uint8_t addr, uint32_t *val) {
int status = sh_get_reg(SH_SENSORIDX_MAX8614X, addr, val);
if (status == 0) {
__DBGMESSAGE("\r\n reg_val=%02X err=0 \r\n", ((uint8_t)*val))
} else {
__DBGMESSAGE("\r\n err=%d\r\n", -1)
}
return;
}
int CSTMR_SH_FeedAccDataIntoSH(Max86140_SH_Status_Tracker_t *p_max8614x_status_track) {
static accel_data_t peek_buf[MAX_NUM_WR_ACC_SAMPLES];
static uint8_t tx_buf[MAX_NUM_WR_ACC_SAMPLES * sizeof(accel_mode1_data) + 2]; // 2 bytes for the command
if(!p_max8614x_status_track->sensor_data_from_host) {
return -1;
} else {
accel_data_t accel_data = {0};
accel_mode1_data acc_sample;
int num_tx, num_samples, num_bytes = 0, num_wr_bytes = 0;
int num_written_samples, nb_expected;
int ret = 0;
// get accelerometer data
ret = CSTMR_SH_HostAccelerometerGet_sensor_xyz(&accel_data);
if (ret < 0)
return ret;
if(CSTMR_SH_HostAccelerometerEnqueueData(&accel_data) != 0) {
__DBGMESSAGE("Thrown an accel sample\n", NULL)
}
if(CSTMR_SH_HostAccelerometerGetDataCount() < MAX_NUM_WR_ACC_SAMPLES) {
return -1;
}
ret = sh_get_num_bytes_in_input_fifo(&num_bytes);
if (ret != 0) {
__DBGMESSAGE("Unable to read num bytes in input fifo\r\n", NULL)
return -1;
}
num_tx = p_max8614x_status_track->input_fifo_size - num_bytes;
if (num_tx <= 0) {
__DBGMESSAGE("num_tx can't be negative\r\n",NULL)
return -1;
}
num_samples = num_tx / sizeof(accel_mode1_data);
num_samples = MIN_MACRO(num_samples, MAX_NUM_WR_ACC_SAMPLES);
num_tx = num_samples * sizeof(accel_mode1_data);
if (num_samples == 0) {
__DBGMESSAGE("Input FIFO is Full\r\n",NULL)
return -1;
}
for(int i = 0; i < num_samples; ++i) {
ret |= CSTMR_SH_HostAccelerometerDequeuData(&peek_buf[i]);
}
if (ret != 0) {
__DBGMESSAGE("CSTMR_SH_HostAccelerometerDequeuData failed\r\n",NULL)
return -1;
}
for (int i = 2, j = 0; j < num_samples; i+= sizeof(accel_mode1_data), j++) {
accel_data = peek_buf[j];
acc_sample.x = (int16_t)(accel_data.x*1000);
acc_sample.y = (int16_t)(accel_data.y*1000);
acc_sample.z = (int16_t)(accel_data.z*1000);
tx_buf[i] = acc_sample.x;
tx_buf[i + 1] = acc_sample.x >> 8;
tx_buf[i + 2] = acc_sample.y;
tx_buf[i + 3] = acc_sample.y >> 8;
tx_buf[i + 4] = acc_sample.z;
tx_buf[i + 5] = acc_sample.z >> 8;
}
ret = sh_feed_to_input_fifo(tx_buf, num_tx + 2, &num_wr_bytes);
if(ret != 0) {
__DBGMESSAGE("sh_feed_to_input_fifo\r\n",NULL)
return -1;
}
num_written_samples = num_wr_bytes / sizeof(accel_mode1_data);
if(num_written_samples != num_samples) {
__DBGMESSAGE("num_written_samples failed\r\n",NULL)
return -1;
}
}
return 0;
}
void SH_Max8614x_set_reg(uint8_t addr, uint32_t val) {
int status;
status = sh_set_reg(SH_SENSORIDX_MAX8614X, addr, val, SSMAX8614X_REG_SIZE);
__DBGMESSAGE("\r\n err=%d\r\n", status);
}
int SH_Max8614x_data_report_execute(void) {
int num_samples, databufLen;
uint8_t *databuf;
Max86140_SH_Status_Tracker_t *p_glbl_max8614x_status_track = get_config_struct();
// prepare the buffer to store the results
databuf = p_glbl_max8614x_status_track->data_buf_storage;
databufLen = sizeof(p_glbl_max8614x_status_track->data_buf_storage);
// poll SH
sh_ss_execute_once(databuf, databufLen, &num_samples);
// feed accelerometer into me11
CSTMR_SH_FeedAccDataIntoSH(p_glbl_max8614x_status_track);
if(num_samples) {
//Skip status byte
uint8_t *data_ptr = &databuf[1];
int i = 0;
for (i = 0; i < num_samples; i++) {
int sh_data_type = p_glbl_max8614x_status_track->data_type_enabled;
if (p_glbl_max8614x_status_track->sample_count_enabled) {
p_glbl_max8614x_status_track->sample_count = *data_ptr++;
}
//Chop up data and send to modules with enabled sensors
if (sh_data_type == SS_DATATYPE_RAW || sh_data_type == SS_DATATYPE_BOTH) {
for (int i = 0; i < SH_NUM_CURRENT_SENSORS; i++) {
if (p_glbl_max8614x_status_track->sensor_enabled_mode[i]) {
p_glbl_max8614x_status_track->sensor_callbacks[i].rx_data_parser(data_ptr);
data_ptr += p_glbl_max8614x_status_track->sensor_callbacks[i].data_size;
}
}
}
if (sh_data_type == SS_DATATYPE_ALGO || sh_data_type == SS_DATATYPE_BOTH) {
for (int i = 0; i < SH_NUM_CURRENT_ALGOS; i++) {
if (p_glbl_max8614x_status_track->algo_enabled_mode[i]) {
p_glbl_max8614x_status_track->algo_callbacks[i].rx_data_parser(data_ptr);
data_ptr += p_glbl_max8614x_status_track->algo_callbacks[i].data_size;
}
}
}
}
}
return num_samples;
}
int SH_Max8614x_algo_init(enum enAlgoMode paramAlgoMode) {
/*
*
* */
int status;
Max86140_SH_Status_Tracker_t *p_glbl_max8614x_status_track = get_config_struct();
if(p_glbl_max8614x_status_track->algo_enabled_mode[SH_ALGOIDX_WHRM] ||
p_glbl_max8614x_status_track->algo_enabled_mode[SH_ALGOIDX_WSPO2]) {
__DBGMESSAGE("\r\n Algo already enabled\r\n",NULL)
return -1;
}
if(paramAlgoMode == kAlgoModeHeartRate) {
status = sh_enable_algo(SH_ALGOIDX_WHRM, SSWHRM_MODE1_DATASIZE);
if (status != SS_SUCCESS) {
__DBGMESSAGE("\r\n err=%d\r\n", COMM_GENERAL_ERROR)
__DBGMESSAGE("FAILED at line %d, enable whrm\n", __LINE__)
return status;
}
p_glbl_max8614x_status_track->algo_enabled_mode[SH_ALGOIDX_WHRM] = 0x01;
} else {
status = sh_enable_algo(SH_ALGOIDX_WSPO2, SSWSPO2_MODE1_DATASIZE);
if (status != SS_SUCCESS) {
__DBGMESSAGE("\r\n err=%d\r\n", COMM_GENERAL_ERROR)
__DBGMESSAGE("FAILED at line %d, enable whrm\n", __LINE__)
return status;
}
p_glbl_max8614x_status_track->algo_enabled_mode[SH_ALGOIDX_WSPO2] = 0x01;
}
}
int SH_Max8614x_default_init(enum enAlgoMode paramAlgoMode) {
/*
* Desc: Initialization flow to get algorithm estimation results:
* 1. initialize algorithm config struct
* 2. enable data type to both raw sensor and algorithm data
* 3. get input fifo size to learn fifo capacity
* 4. set fifo threshold for mfio event frequency
* 5. enable sensor to acquire ppg data
* 6. enable accompanying accel sensor
* 7. enable algorithm
* 8. Sensor Hub now starts to write raw sensor/algorithm data to its data report FIFO which
* reports mfio event when data size determined by fifo threshold is written to report fifo
* data can be read by SH_Max8614x_data_report_execute function.
*
* */
int status;
// first initialize the global config struct
initialize_config_struct();
Max86140_SH_Status_Tracker_t *p_glbl_max8614x_status_track = get_config_struct();
// get input fifo size
status = sh_get_input_fifo_size(&p_glbl_max8614x_status_track->input_fifo_size);
if (status != SS_SUCCESS) {
__DBGMESSAGE("\r\n err=%d\r\n", COMM_GENERAL_ERROR)
__DBGMESSAGE("FAILED at line %d\n", __LINE__)
return COMM_GENERAL_ERROR;;
}
// enable both data stype
p_glbl_max8614x_status_track->data_type_enabled = SS_DATATYPE_BOTH;
p_glbl_max8614x_status_track->sample_count_enabled = false;
status = sh_set_data_type(p_glbl_max8614x_status_track->data_type_enabled,
p_glbl_max8614x_status_track->sample_count_enabled);
if (status != 0) {
__DBGMESSAGE("\r\n err=%d\r\n", COMM_GENERAL_ERROR)
__DBGMESSAGE("FAILED at line %d\n", __LINE__)
return COMM_GENERAL_ERROR;
}
status = sh_set_fifo_thresh(15);
if (status != 0) {
__DBGMESSAGE("\r\n err=%d\r\n", COMM_GENERAL_ERROR)
__DBGMESSAGE("FAILED at line %d\n", __LINE__)
return COMM_GENERAL_ERROR;
}
status = sh_sensor_enable(SH_SENSORIDX_MAX8614X, SSMAX8614X_MODE1_DATASIZE, SH_INPUT_DATA_DIRECT_SENSOR);
if (status != 0) {
__DBGMESSAGE("\r\n err=%d\r\n", COMM_GENERAL_ERROR)
__DBGMESSAGE("FAILED at line %d\n", __LINE__)
return COMM_GENERAL_ERROR;
}
p_glbl_max8614x_status_track->sensor_enabled_mode[SH_SENSORIDX_MAX8614X] = 0x01;
#ifdef ENABLE_SENSOR_HUB_ACCEL
status = sh_sensor_enable(SH_SENSORIDX_ACCEL, SSACCEL_MODE1_DATASIZE, SH_INPUT_DATA_DIRECT_SENSOR);
if (status != SS_SUCCESS) {
__DBGMESSAGE("\r\n err=%d\r\n", COMM_GENERAL_ERROR)
__DBGMESSAGE("FAILED at line %d\n", __LINE__)
}
p_glbl_max8614x_status_track->sensor_data_from_host = false;
p_glbl_max8614x_status_track->sensor_enabled_mode[SH_SENSORIDX_ACCEL] = 0x01;
#elif defined(USE_HOST_ACCEL)
CSTMR_SH_HostAccelerometerInitialize();
CSTMR_SH_HostAccelerometerSetDefaults();
status = CSTMR_SH_HostAccelerometerSetSampleRate(BMI160_SAMPLE_RATE);
if (status != 0) {
__DBGMESSAGE("Unable to set BMI160's sample rate\n",NULL)
__DBGMESSAGE("\r\n err=%d\r\n", COMM_GENERAL_ERROR)
__DBGMESSAGE("FAILED at line %d\n", __LINE__)
return status;
}
status = CSTMR_SH_HostAccelerometerEnableDataReadyInterrupt();
if(status != 0){
__DBGMESSAGE("Unable to enable BMI160 Interrupt, ret: %d\n", status)
return status;
}
status = sh_sensor_enable(SH_SENSORIDX_ACCEL, SSACCEL_MODE1_DATASIZE, SH_INPUT_DATA_FROM_HOST);
if (status != 0) {
__DBGMESSAGE("\r\n err=%d\r\n", COMM_GENERAL_ERROR)
__DBGMESSAGE("FAILED at line %d\n", __LINE__)
return status;
}
p_glbl_max8614x_status_track->sensor_data_from_host = true;
p_glbl_max8614x_status_track->sensor_enabled_mode[SH_SENSORIDX_ACCEL] = 0x01;
#endif
status = SH_Max8614x_algo_init(paramAlgoMode);
if(status != 0) {
__DBGMESSAGE("AlgoInitFailed\r\n",NULL)
}
__DBGMESSAGE("\r\n err=%d\r\n", status)
return status;
}
void SH_Max8614x_stop() {
sh_disable_irq_mfioevent();
Max86140_SH_Status_Tracker_t *p_glbl_max8614x_status_track = get_config_struct();
for(int i = 0; i < SH_NUM_CURRENT_SENSORS; ++i) {
if(p_glbl_max8614x_status_track->sensor_enabled_mode[i]) {
p_glbl_max8614x_status_track->sensor_enabled_mode[i] = 0;
sh_sensor_disable(i);
}
}
for(int i = 0; i < SH_NUM_CURRENT_ALGOS; ++i) {
if(p_glbl_max8614x_status_track->algo_enabled_mode[i]) {
p_glbl_max8614x_status_track->algo_enabled_mode[i] = 0;
sh_disable_algo(i);
}
}
if(p_glbl_max8614x_status_track->sensor_data_from_host) {
CSTMR_SH_HostAccelerometerInitialize();
p_glbl_max8614x_status_track->sensor_data_from_host = 0;
}
sh_clear_mfio_event_flag();
sh_enable_irq_mfioevent();
}
