MAX32620HSP (MAXREFDES100) RPC Example for Graphical User Interface

Dependencies:   USBDevice

Fork of HSP_Release by Jerry Bradshaw

This is an example program for the MAX32620HSP (MAXREFDES100 Health Sensor Platform). It demonstrates all the features of the platform and works with a companion graphical user interface (GUI) to help evaluate/configure/monitor the board. Go to the MAXREFDES100 product page and click on "design resources" to download the companion software. The GUI connects to the board through an RPC interface on a virtual serial port over the USB interface.

The RPC interface provides access to all the features of the board and is available to interface with other development environments such Matlab. This firmware provides realtime data streaming through the RPC interface over USB, and also provides the ability to log the data to flash for untethered battery operation. The data logging settings are configured through the GUI, and the GUI also provides the interface to download logged data.

Details on the RPC interface can be found here: HSP RPC Interface Documentation

Windows

With this program loaded, the MAX32620HSP will appear on your computer as a serial port. On Mac and Linux, this will happen by default. For Windows, you need to install a driver: HSP serial port windows driver

For more details about this platform and how to use it, see the MAXREFDES100 product page.

HSP/Devices/MAX30101/MAX30101/MAX30101.cpp

Committer:
jbradshaw
Date:
2017-04-25
Revision:
3:8e9b9f5818aa
Parent:
1:9490836294ea

File content as of revision 3:8e9b9f5818aa:

/*******************************************************************************
 * Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included
 * in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
 * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
 * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 *
 * Except as contained in this notice, the name of Maxim Integrated
 * Products, Inc. shall not be used except as stated in the Maxim Integrated
 * Products, Inc. Branding Policy.
 *
 * The mere transfer of this software does not imply any licenses
 * of trade secrets, proprietary technology, copyrights, patents,
 * trademarks, maskwork rights, or any other form of intellectual
 * property whatsoever. Maxim Integrated Products, Inc. retains all
 * ownership rights.
 *******************************************************************************
 */

#include "mbed.h"
#include "MAX30101.h"

MAX30101 *MAX30101::instance = NULL;

//******************************************************************************
MAX30101::MAX30101(PinName sda, PinName scl, int slaveAddress): 
          slaveAddress(slaveAddress) {
  i2c = new I2C(sda, scl);
  i2c_owner = true;
  i2c->frequency(400000);
  onInterruptCallback = NULL;
  onDataAvailableCallback = NULL;
  instance = this;
}

//******************************************************************************
MAX30101::MAX30101(I2C *_i2c, int slaveAddress) : 
          slaveAddress(slaveAddress) {
  i2c = _i2c;
  i2c_owner = false;
  i2c->frequency(400000);
  onInterruptCallback = NULL;
  onDataAvailableCallback = NULL;
  instance = this;
}

//******************************************************************************
MAX30101::~MAX30101(void) {
  if (i2c_owner) {
    delete i2c;
  }
}

//******************************************************************************
int MAX30101::int_handler(void) {
  uint16_t index, i;
  uint16_t rx_bytes, second_rx_bytes;
  char temp_int;
  char temp_frac;
  uint16_t num_active_led;
  uint32_t sample;
  int loop = 1;
  static uint8_t cntr_int = 0;

  max30101_Interrupt_Status_1_t   Interrupt_Status_1;
  max30101_Interrupt_Status_2_t   Interrupt_Status_2;
  max30101_mode_configuration_t   mode_configuration;
  max30101_multiLED_mode_ctrl_1_t multiLED_mode_ctrl_1;
  max30101_multiLED_mode_ctrl_2_t multiLED_mode_ctrl_2;
  max30101_spo2_configuration_t   spo2_configuration;
  max30101_fifo_configuration_t   fifo_configuration;

  cntr_int++;

  while (loop) {
    if (i2c_reg_read(REG_INT_STAT_1, &Interrupt_Status_1.all) != 0) { ///< Read Interrupt flag bits
      return -1;
    }

    if (i2c_reg_read(REG_INT_STAT_2, &Interrupt_Status_2.all) != 0) { ///< Read Interrupt flag bits
      return -1;
    }

    /* Read all the relevant register bits */
    if (i2c_reg_read(REG_MODE_CFG, &mode_configuration.all) != 0) {
      return -1;
    }


    if (i2c_reg_read(REG_SLT2_SLT1, &multiLED_mode_ctrl_1.all) != 0) {
      return -1;
    }
    

    if (i2c_reg_read(REG_SLT4_SLT3, &multiLED_mode_ctrl_2.all) != 0) {
      return -1;
    }    
    

    if (i2c_reg_read(REG_SPO2_CFG, &spo2_configuration.all) != 0) {
      return -1;
    }  
    

    if (i2c_reg_read(REG_FIFO_CFG, &fifo_configuration.all) != 0) {
      return -1;
    }     
    
    

    if (Interrupt_Status_1.bit.a_full) {
      ///< Read the sample(s)
      char reg = REG_FIFO_DATA;

      num_active_led = 0;

     if (mode_configuration.bit.mode == 0x02) {///< Heart Rate mode, i.e. 1 led    
        num_active_led = 1;
      } else if (mode_configuration.bit.mode == 0x03) { ///< SpO2 mode, i.e. 2 led
        num_active_led = 2;
      } else if (mode_configuration.bit.mode == 0x07) { ///< Multi-LED mode, i.e. 1-4 led
        if (multiLED_mode_ctrl_1.bit.slot1 != 0) {
          num_active_led++;
        }

        if (multiLED_mode_ctrl_1.bit.slot2 != 0) {
          num_active_led++;
        }

        if (multiLED_mode_ctrl_2.bit.slot3 != 0) {
          num_active_led++;
        }

        if (multiLED_mode_ctrl_2.bit.slot4 != 0) {
          num_active_led++;
        }
      }
               ///< 3bytes/LED x Number of Active LED x FIFO level selected
        rx_bytes =  3 * num_active_led * (32-fifo_configuration.bit.fifo_a_full);   

      second_rx_bytes = rx_bytes;
      
      /**
       * @brief: 
       * The FIFO Size is determined by the Sample size.  The number of bytes
       * in a Sample is dictated by number of LED's
       *
       *   #LED Selected     Bytes in "1" sample
       *        1                  3
       *        2                  6
       *        3                  9
       *        4                  12
       *
       *  The I2C API function limits the number of bytes to read, to 256 (i.e.
       *  char).  Therefore, when set for Multiple LED's and the FIFO
       *  size is set to 32.  It would mean there is more than 256 bytes.
       *  In that case two I2C reads have to be made.  However It is important
       *  to note that each "Sample" must be read completely and reading only
       *  partial number of bytes from a sample will result in erroneous data.
       * 
       *
       *  For example:
       *  Num of LED selected = 3 and FIFO size is set to 32 (i.e. 0 value in
       *  register), then the number of bytes will be
       *  3bytes/Led * 3led's * 32 = 288 bytes in all.  Since there are
       *  3 LED's each sample will contain (3 * 3) 9bytes.  
       *  Therefore Sample 1 = 9bytes, Sample 2 = 18,... Sample 28 = 252. 
       *  Therefore the first I2C read should be 252 bytes and the second
       *  read should be 288-252 = 36.
       *
       *  It turns out that this size issue comes up only when number of LED
       * selected is 3 or 4 and choosing 252bytes
       *  for the first I2C read would work for both Number of LED selection.
       */

      if (rx_bytes <= CHUNK_SIZE) {
        I2CM_Read(slaveAddress, &reg, 1, &max30101_rawData[0],
                  (char)rx_bytes /*total_databytes_1*/);
      } else {
        I2CM_Read(slaveAddress, &reg, 1, &max30101_rawData[0], CHUNK_SIZE);

        second_rx_bytes = second_rx_bytes - CHUNK_SIZE;
        I2CM_Read(slaveAddress, &reg, 1, &max30101_rawData[CHUNK_SIZE],
                  (char)second_rx_bytes);
      }

      index = 0;

      for (i = 0; i < rx_bytes; i += 3) {
        sample = ((uint32_t)(max30101_rawData[i] & 0x03) << 16) | (max30101_rawData[i + 1] << 8) | max30101_rawData[i + 2];

        ///< Right shift the data based on the LED_PW setting
        sample = sample >> (3 - spo2_configuration.bit.led_pw); // 0=shift 3, 1=shift 2, 2=shift 1, 3=no shift

        max30101_buffer[index++] = sample;
      }

      onDataAvailableCallback(MAX30101_OXIMETER_DATA + num_active_led, max30101_buffer, index);
    }


    ///< This interrupt handles the temperature interrupt
    if (Interrupt_Status_2.bit.die_temp_rdy) {
      char reg;

      reg = REG_TINT;
      if (I2CM_Read(slaveAddress, &reg, 1, &temp_int, 1) != 0) {
        return -1;
      }

      reg = REG_TFRAC;
      if (I2CM_Read(slaveAddress, &reg, 1, &temp_frac, 1) != 0) {
        return -1;
      }

      max30101_final_temp = (int8_t)temp_int + 0.0625f * temp_frac;

      if (i2c_reg_write(REG_TEMP_EN, 0x00) != 0) { ///< Die Temperature Config, Temp disable... after one read...
        return -1;
      }
    }

    if (i2c_reg_read(REG_INT_STAT_1, &Interrupt_Status_1.all) != 0) { ///< Read Interrupt flag bits

      return -1;
    }
    if (Interrupt_Status_1.bit.a_full != 1) {
      loop = 0;
    }
  }

  interruptPostCallback();


  return 0;
}

//******************************************************************************
int MAX30101::SpO2mode_init(uint8_t fifo_waterlevel_mark, uint8_t sample_avg,
                            uint8_t sample_rate, uint8_t pulse_width,
                            uint8_t red_led_current, uint8_t ir_led_current) {

  char status;

  max30101_mode_configuration_t  mode_configuration;
  max30101_fifo_configuration_t  fifo_configuration;
  max30101_spo2_configuration_t  spo2_configuration;
  max30101_Interrupt_Enable_1_t  Interrupt_Enable_1;

  mode_configuration.all = 0;
  mode_configuration.bit.reset = 1;
  if (i2c_reg_write(REG_MODE_CFG, mode_configuration.all) != 0) // Reset the device
  {
    return -1;
  }

  ///< Give it some settle time (100ms)
  wait(1.0 / 10.0); ///< Let things settle down a bit

  fifo_configuration.all = 0;
  fifo_configuration.bit.smp_ave = sample_avg; ///< Sample averaging;
  fifo_configuration.bit.fifo_roll_over_en = 1; ///< FIFO Roll over enabled
  fifo_configuration.bit.fifo_a_full = fifo_waterlevel_mark; ///< Interrupt when certain level is filled

  if (i2c_reg_write(REG_FIFO_CFG, fifo_configuration.all) != 0) {
    return -1;
  }

  spo2_configuration.bit.spo2_adc_rge = 0x2; ///< ADC Range 8192 fullscale
  spo2_configuration.bit.spo2_sr = sample_rate; ///< 100 Samp/sec.
  spo2_configuration.bit.led_pw = pulse_width; ///< Pulse Width=411us and ADC Resolution=18
  if (i2c_reg_write(REG_SPO2_CFG, spo2_configuration.all) != 0) {
    return -1;
  }

  if (i2c_reg_write(REG_LED1_PA, red_led_current) != 0) {
    return -1;
  }

  if (i2c_reg_write(REG_LED2_PA, ir_led_current) != 0) {
    return -1;
  }

  /************/

  if (i2c_reg_read(REG_INT_STAT_1, &status) != 0) ///<  Clear INT1 by reading the status
  {
    return -1;
  }

  if (i2c_reg_read(REG_INT_STAT_2, &status) != 0) ///<  Clear INT2 by reading the status
  {
    return -1;
  }

  if (i2c_reg_write(REG_FIFO_W_PTR, 0x00) != 0) ///<  Clear FIFO ptr
  {
    return -1;
  }

  if (i2c_reg_write(REG_FIFO_OVF_CNT, 0x00) != 0) ///<  Clear FIFO ptr
  {
    return -1;
  }

  if (i2c_reg_write(REG_FIFO_R_PTR, 0x00) != 0) ///<  Clear FIFO ptr
  {
    return -1;
  }

  Interrupt_Enable_1.all = 0;
  Interrupt_Enable_1.bit.a_full_en = 1; ///<  Enable FIFO almost full interrupt
  if (i2c_reg_write(REG_INT_EN_1, Interrupt_Enable_1.all) != 0) {
    return -1;
  }

  mode_configuration.all = 0;
  mode_configuration.bit.mode = 0x03; ///< SpO2 mode
  if (i2c_reg_write(REG_MODE_CFG, mode_configuration.all) != 0) {
    return -1;
  }

  return 0;
}

//******************************************************************************
int MAX30101::SpO2mode_stop(void) {

  max30101_Interrupt_Enable_1_t  Interrupt_Enable_1;
  max30101_mode_configuration_t  mode_configuration;
  uint8_t                      led1_pa;
  uint8_t                      led2_pa;

  Interrupt_Enable_1.all = 0;
  Interrupt_Enable_1.bit.a_full_en = 0; ///<  Disable FIFO almost full interrupt
  if (i2c_reg_write(REG_INT_EN_1, Interrupt_Enable_1.all) != 0) {
    return -1;
  }

  mode_configuration.all = 0;
  mode_configuration.bit.mode = 0x00; ///< SpO2 mode off
  if (i2c_reg_write(REG_MODE_CFG, mode_configuration.all) != 0) {
    return -1;
  }

  led1_pa = 0; ///< RED LED current, 0.0
  if (i2c_reg_write(REG_LED1_PA, led1_pa) != 0) {
    return -1;
  }

  led2_pa = 0; ///< IR LED current, 0.0
  if (i2c_reg_write(REG_LED2_PA, led2_pa) != 0) {
    return -1;
  }

  return 0;
}

//******************************************************************************
int MAX30101::HRmode_init(uint8_t fifo_waterlevel_mark, uint8_t sample_avg,
                          uint8_t sample_rate, uint8_t pulse_width,
                          uint8_t red_led_current) {

  /*uint8_t*/ char status;

  max30101_mode_configuration_t  mode_configuration;
  max30101_fifo_configuration_t  fifo_configuration;
  max30101_spo2_configuration_t  spo2_configuration;
  max30101_Interrupt_Enable_1_t  Interrupt_Enable_1;

  mode_configuration.all = 0;
  mode_configuration.bit.reset = 1;
  if (i2c_reg_write(REG_MODE_CFG, mode_configuration.all) != 0) ///< Reset the device, Mode = don't use...
  {
    return -1;
  }

  ///< Give it some settle time (100ms)
  wait(1.0 / 10.0); ///< Let things settle down a bit

  fifo_configuration.all = 0;
  fifo_configuration.bit.smp_ave = sample_avg;  ///< Sample averaging;
  fifo_configuration.bit.fifo_roll_over_en = 1; ///< FIFO Roll over enabled
  fifo_configuration.bit.fifo_a_full = fifo_waterlevel_mark; ///< Interrupt when certain level is filled
  if (i2c_reg_write(REG_FIFO_CFG, fifo_configuration.all) != 0) {
    return -1;
  }

  spo2_configuration.bit.spo2_adc_rge = 0x2;    ///< ADC Range 8192 fullscale
  spo2_configuration.bit.spo2_sr = sample_rate; ///< 100 Samp/sec.
  spo2_configuration.bit.led_pw = pulse_width;  ///< Pulse Width=411us and ADC Resolution=18
  if (i2c_reg_write(REG_SPO2_CFG, spo2_configuration.all) != 0) {
    return -1;
  }

  if (i2c_reg_write(REG_LED1_PA, red_led_current) != 0) {
    return -1;
  }

  /************/

  if (i2c_reg_read(REG_INT_STAT_1, &status) != 0) ///<  Clear INT1 by reading the status
  {
    return -1;
  }

  if (i2c_reg_read(REG_INT_STAT_2, &status) != 0) ///< Clear INT2 by reading the status
  {
    return -1;
  }

  if (i2c_reg_write(REG_FIFO_W_PTR, 0x00) != 0) ///<  Clear FIFO ptr
  {
    return -1;
  }

  if (i2c_reg_write(REG_FIFO_OVF_CNT, 0x00) != 0) ///<  Clear FIFO ptr
  {
    return -1;
  }

  if (i2c_reg_write(REG_FIFO_R_PTR, 0x00) != 0) ///<  Clear FIFO ptr
  {
    return -1;
  }

  Interrupt_Enable_1.all = 0;
  Interrupt_Enable_1.bit.a_full_en = 1;
  
  // Interrupt
  if (i2c_reg_write(REG_INT_EN_1, Interrupt_Enable_1.all) != 0) {
    return -1;
  }

  mode_configuration.all = 0;
  mode_configuration.bit.mode = 0x02; ///< HR mode
  if (i2c_reg_write(REG_MODE_CFG, mode_configuration.all) != 0) {
    return -1;
  }

  return 0;
}

//******************************************************************************
int MAX30101::HRmode_stop(void) {

  max30101_Interrupt_Enable_1_t  Interrupt_Enable_1;
  max30101_mode_configuration_t  mode_configuration;

  Interrupt_Enable_1.all = 0;
  Interrupt_Enable_1.bit.a_full_en = 0; ///< Disable FIFO almost full interrupt
  if (i2c_reg_write(REG_INT_EN_1, Interrupt_Enable_1.all) != 0) {
    return -1;
  }

  mode_configuration.all = 0;
  mode_configuration.bit.mode = 0x00; ///< HR mode off
  if (i2c_reg_write(REG_MODE_CFG, mode_configuration.all) != 0) {
    return -1;
  }

  if (i2c_reg_write(REG_LED1_PA, 0) != 0) {
    return -1;
  }

  return 0;
}

//******************************************************************************
int MAX30101::Multimode_init(uint8_t fifo_waterlevel_mark, uint8_t sample_avg,
                             uint8_t sample_rate, uint8_t pulse_width,
                             uint8_t red_led_current, uint8_t ir_led_current,
                             uint8_t green_led_current, uint8_t slot_1,
                             uint8_t slot_2, uint8_t slot_3, uint8_t slot_4) {

  char status;
  max30101_mode_configuration_t    mode_configuration;
  max30101_fifo_configuration_t    fifo_configuration;
  max30101_spo2_configuration_t    spo2_configuration;
  max30101_multiLED_mode_ctrl_1_t  multiLED_mode_ctrl_1;
  max30101_multiLED_mode_ctrl_2_t  multiLED_mode_ctrl_2;
  max30101_Interrupt_Enable_1_t    Interrupt_Enable_1;
  
  mode_configuration.all = 0;
  mode_configuration.bit.reset = 1;
  if (i2c_reg_write(REG_MODE_CFG, mode_configuration.all) != 0) ///< Reset the device, Mode = don't use...
  {
    return -1;
  }

  /* Give it some settle time (100ms) */ ///< Let things settle down a bit
  wait(1.0 / 10.0);

  fifo_configuration.all = 0;
  fifo_configuration.bit.smp_ave = sample_avg; ///< Sample averaging;
  fifo_configuration.bit.fifo_roll_over_en = 1; ///< FIFO Roll over enabled
  fifo_configuration.bit.fifo_a_full =
      fifo_waterlevel_mark; ///< Interrupt when certain level is filled
  if (i2c_reg_write(REG_FIFO_CFG, fifo_configuration.all) != 0) {
    return -1;
  }

  spo2_configuration.bit.spo2_adc_rge = 0x2;    ///< ADC Range 8192 fullscale
  spo2_configuration.bit.spo2_sr = sample_rate; ///< 100 Samp/sec.
  spo2_configuration.bit.led_pw = pulse_width;  ///< Pulse Width=411us and ADC Resolution=18
  if (i2c_reg_write(REG_SPO2_CFG, spo2_configuration.all) != 0) {
    return -1;
  }

  if (i2c_reg_write(REG_LED1_PA, red_led_current) != 0) {
    return -1;
  }

  if (i2c_reg_write(REG_LED2_PA, ir_led_current) != 0) {
    return -1;
  }

  if (i2c_reg_write(REG_LED3_PA, green_led_current) != 0) {
    return -1;
  }

  ///< 0x01=Red(LED1), 0x02=IR(LED2), 0x03=Green(LED3) : Use LEDn_PA to adjust the intensity
  ///< 0x05=Red      , 0x06=IR      , 0x07=Green       : Use PILOT_PA to adjust the intensity DO NOT USE THIS ROW...

  multiLED_mode_ctrl_1.bit.slot1 = slot_1;
  multiLED_mode_ctrl_1.bit.slot2 = slot_2;
  if (i2c_reg_write(REG_SLT2_SLT1, multiLED_mode_ctrl_1.all)) {
    return -1;
  }

  multiLED_mode_ctrl_2.all = 0;
  multiLED_mode_ctrl_2.bit.slot3 = slot_3;
  multiLED_mode_ctrl_2.bit.slot4 = slot_4;
  if (i2c_reg_write(REG_SLT4_SLT3, multiLED_mode_ctrl_2.all)) {
    return -1;
  }

  /************/

  if (i2c_reg_read(REG_INT_STAT_1, &status) != 0) ///<  Clear INT1 by reading the status
  {
    return -1;
  }

  if (i2c_reg_read(REG_INT_STAT_2, &status) != 0) ///<  Clear INT2 by reading the status
  {
    return -1;
  }

  if (i2c_reg_write(REG_FIFO_W_PTR, 0x00) != 0) ///<  Clear FIFO ptr
  {
    return -1;
  }

  if (i2c_reg_write(REG_FIFO_OVF_CNT, 0x00) != 0) ///<  Clear FIFO ptr
  {
    return -1;
  }

  if (i2c_reg_write(REG_FIFO_R_PTR, 0x00) != 0) ///<  Clear FIFO ptr
  {
    return -1;
  }

  Interrupt_Enable_1.all = 0;
  Interrupt_Enable_1.bit.a_full_en = 1; ///<  Enable FIFO almost full interrupt
  if (i2c_reg_write(REG_INT_EN_1, Interrupt_Enable_1.all) != 0) {
    return -1;
  }

  mode_configuration.all = 0;
  mode_configuration.bit.mode = 0x07; ///< Multi-LED mode
  if (i2c_reg_write(REG_MODE_CFG, mode_configuration.all) != 0) {
    return -1;
  }

  return 0;
}

//******************************************************************************
int MAX30101::Multimode_stop(void) {

max30101_Interrupt_Enable_1_t  Interrupt_Enable_1;
max30101_mode_configuration_t  mode_configuration;


  Interrupt_Enable_1.all = 0;
  Interrupt_Enable_1.bit.a_full_en = 0; ///< Disable FIFO almost full interrupt
  if (i2c_reg_write(REG_INT_EN_1, Interrupt_Enable_1.all) != 0) {
    return -1;
  }

  mode_configuration.all = 0;
  mode_configuration.bit.mode = 0x00; ///< Multi-LED mode off
  if (i2c_reg_write(REG_MODE_CFG, mode_configuration.all) != 0) {
    return -1;
  }

  if (i2c_reg_write(REG_LED1_PA, 0) != 0) {
    return -1;
  }

  if (i2c_reg_write(REG_LED2_PA, 0) != 0) {
    return -1;
  }

  if (i2c_reg_write(REG_LED3_PA, 0) != 0) {
    return -1;
  }
  return 0;
}

//******************************************************************************
int MAX30101::tempread(void) {
   
  if (i2c_reg_write(REG_INT_EN_2, 0x02) != 0) {///< Interrupt Enable 2, Temperature Interrupt
    return -1;
  }

  if (i2c_reg_write(REG_TEMP_EN, 0x01) != 0) {///< Die Temperature Config, Temp enable...

    return -1;
  }
  return 0;
}

//******************************************************************************
int MAX30101::i2c_reg_write(MAX30101_REG_map_t reg, char value) {

  char cmdData[2] = {reg, value};

  if (I2CM_Write(slaveAddress, NULL, 0, cmdData, 2) != 0) {
    return -1;
  }

  return 0;
}

//******************************************************************************
int MAX30101::i2c_reg_read(MAX30101_REG_map_t reg, char *value) {
  if (I2CM_Read(slaveAddress, (char *)&reg, 1, value, 1) != 0 /*1*/) {
    return -1;
  }

  return 0;
}

//******************************************************************************
int MAX30101::I2CM_Read(int slaveAddress, char *writeData, char writeCount,
                        char *readData, char readCount) {

  if (writeData != NULL && writeCount != 0) {
    i2c->write(slaveAddress, writeData, writeCount, true);
  }
  if (readData != NULL && readCount != 0) {
    i2c->read(slaveAddress, readData, readCount);
  }
  return 0;
}

//******************************************************************************
int MAX30101::I2CM_Write(int slaveAddress, char *writeData1, char writeCount1,
                         char *writeData2, char writeCount2) {
 
  if (writeData1 != NULL && writeCount1 != 0) {
    i2c->write(slaveAddress, writeData1, writeCount1);
  }
  if (writeData2 != NULL && writeCount2 != 0) {
    i2c->write(slaveAddress, writeData2, writeCount2);
  }
  return 0;
}

//******************************************************************************
void MAX30101::onDataAvailable(DataCallbackFunction _onDataAvailable) {

  onDataAvailableCallback = _onDataAvailable;
}

//******************************************************************************
void MAX30101::dataAvailable(uint32_t id, uint32_t *buffer, uint32_t length) {

  if (onDataAvailableCallback != NULL) {
    (*onDataAvailableCallback)(id, buffer, length);
  }
}

//******************************************************************************
void MAX30101::onInterrupt(InterruptFunction _onInterrupt) {

  onInterruptCallback = _onInterrupt;
}

//******************************************************************************
void MAX30101::interruptPostCallback(void) {

  if (onInterruptCallback != NULL) {

    (*onInterruptCallback)();
  }
}

//******************************************************************************
void MAX30101::MidIntHandler(void) { 

  MAX30101::instance->int_handler();
}