MAXREFDES143#: DeepCover Embedded Security in IoT Authenticated Sensing & Notification

Dependencies:   MaximInterface mbed

The MAXREFDES143# is an Internet of Things (IoT) embedded security reference design, built to protect an industrial sensing node by means of authentication and notification to a web server. The hardware includes a peripheral module representing a protected sensor node monitoring operating temperature and remaining life of a filter (simulated through ambient light sensing) and an mbed shield representing a controller node responsible for monitoring one or more sensor nodes. The design is hierarchical with each controller node communicating data from connected sensor nodes to a web server that maintains a centralized log and dispatches notifications as necessary. The mbed shield contains a Wi-Fi module, a DS2465 coprocessor with 1-Wire® master function, an LCD, LEDs, and pushbuttons. The protected sensor node contains a DS28E15 authenticator, a DS7505 temperature sensor, and a MAX44009 light sensor. The mbed shield communicates to a web server by the onboard Wi-Fi module and to the protected sensor node with I2C and 1-Wire. The MAXREFDES143# is equipped with a standard shield connector for immediate testing using an mbed board such as the MAX32600MBED#. The simplicity of this design enables rapid integration into any star-topology IoT network requiring the heightened security with low overhead provided by the SHA-256 symmetric-key algorithm.

More information about the MAXREFDES143# is available on the Maxim Integrated website.

Revision:
1:e1c7c1c636af
Child:
6:b6bafd0a7013
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/Display.cpp	Thu Apr 14 19:48:01 2016 +0000
@@ -0,0 +1,283 @@
+/*******************************************************************************
+* Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved.
+*
+* Permission is hereby granted, free of charge, to any person obtaining a
+* copy of this software and associated documentation files (the "Software"),
+* to deal in the Software without restriction, including without limitation
+* the rights to use, copy, modify, merge, publish, distribute, sublicense,
+* and/or sell copies of the Software, and to permit persons to whom the
+* Software is furnished to do so, subject to the following conditions:
+*
+* The above copyright notice and this permission notice shall be included
+* in all copies or substantial portions of the Software.
+*
+* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
+* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
+* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
+* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES
+* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
+* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
+* OTHER DEALINGS IN THE SOFTWARE.
+*
+* Except as contained in this notice, the name of Maxim Integrated
+* Products, Inc. shall not be used except as stated in the Maxim Integrated
+* Products, Inc. Branding Policy.
+*
+* The mere transfer of this software does not imply any licenses
+* of trade secrets, proprietary technology, copyrights, patents,
+* trademarks, maskwork rights, or any other form of intellectual
+* property whatsoever. Maxim Integrated Products, Inc. retains all
+* ownership rights.
+*******************************************************************************
+*/
+
+#include <sstream>
+#include "Display.hpp"
+#include "mbed.h"
+
+//LCD Commands
+//If the RS bit is set to logic 1, these display bytes are stored in the display RAM at the address specified by the data pointer. The data pointer is
+//automatically updated and the data is directed to the intended ST7036i device. If the RS bit of the last control byte is set to
+//logic 0, these command bytes will be decoded and the setting of the device will be changed according to the received commands.
+enum LCD_Commands
+{
+  ControlByte = 0x00,	        //Only one control byte will be sent. Only a stream of data bytes is allowed to follow.
+  ControlByte_RS_Set = 0x40,  	//Only one control byte will be sent with the RS bit set. Only a stream of data bytes is allowed to follow.
+  ControlBytes = 0x80,          //Another control byte will follow, unless an I2C Stop condition is received.
+  ControlBytes_RS_Set = 0xC0, 	//RS Set and another control byte will follow, unless an I2C Stop condition is received.
+};
+
+//LCD Instructions
+enum LCD_Instructions
+{
+  ClearDisplay = 0x01,
+  Display_OFF = 0x08,     	//Display off
+  Display_ON = 0x0C,     	        //Display on, cursor off, cursor position off
+  ReturnHome = 0x02,
+  SetDdramAddress = 0x80
+};
+
+// LED Driver Port Registers
+// Initial port state 0x80
+enum LED_Driver_Ports
+{
+  P1 = 0x01,
+  P2 = 0x02,  // Blue LED
+  P3 = 0x03,  // Green LED
+  P4 = 0x04   // Red LED
+};
+
+// Convert a byte color value into the representation used by the MAX7306 PWM registers
+static std::uint8_t convertColorToPwmRegVal(std::uint8_t color)
+{
+  const std::uint8_t staticOffRegVal = 0x80; // LED is static off by setting to input
+  const std::uint8_t staticOnRegVal = 0x00; // LED is static on
+  const std::uint8_t minOnRegVal = 0x01; // LED on for minimum duty cycle
+  
+  std::uint8_t regVal;
+  if (color == 0x00) // Use static off for no color
+  {
+    regVal = staticOffRegVal;
+  }
+  else if (color == 0xFF) // Use static on for full color
+  {
+    regVal = staticOnRegVal;
+  }
+  else // Use standard PWN for all other values
+  {
+    // The 3 least significant bits cannot be rendered with the MAX7306
+    regVal = color >> 3;
+    if (regVal == staticOnRegVal)
+      regVal = minOnRegVal;
+  }
+  return regVal;
+}
+
+Display::Display(I2C & I2C_intf, uint8_t LCD_I2C_addr, uint8_t LED_driver_I2C_addr)
+  : m_I2C_intf(I2C_intf), m_LCD_I2C_addr(LCD_I2C_addr), m_LED_driver_I2C_addr(LED_driver_I2C_addr)
+{
+  
+}
+
+void Display::initialize(void)
+{
+  initializeLCD();
+  initializeLED_Driver();
+}
+
+void Display::initializeLED_Driver(void)
+{
+  const std::uint8_t Configuration26 = 0x26;  //intial port state 0xEC
+  const std::uint8_t Configuration27 = 0x27;  //intial port state 0x8F
+  
+  //Intial mode
+  //write to Configuration Register 0x26
+  m_I2C_intf.start();
+  m_I2C_intf.write(m_LED_driver_I2C_addr);
+  m_I2C_intf.write(Configuration26);
+  //RST does  reset PWM/blink counters, RST resets registers to power-on-reset state
+  m_I2C_intf.write(0x1F); 
+  m_I2C_intf.stop();
+  
+  //Write to Configuration Register 0x27
+  m_I2C_intf.start();
+  m_I2C_intf.write(m_LED_driver_I2C_addr);
+  m_I2C_intf.write(Configuration27);
+  //Enable bus time out, set P1,P2,P3 to be controlled by their registers (0x01,0x02,0x03)
+  m_I2C_intf.write(0x0E); 
+  m_I2C_intf.stop();
+}
+
+void Display::setBackLightColor(const Color & color)
+{  
+  // Red
+  m_I2C_intf.start();
+  m_I2C_intf.write(m_LED_driver_I2C_addr);
+  m_I2C_intf.write(P4);
+  m_I2C_intf.write(convertColorToPwmRegVal(color.R)); 
+  m_I2C_intf.stop();
+   
+  // Green
+  m_I2C_intf.start();
+  m_I2C_intf.write(m_LED_driver_I2C_addr);
+  m_I2C_intf.write(P3);
+  m_I2C_intf.write(convertColorToPwmRegVal(color.G)); 
+  m_I2C_intf.stop();
+  
+  // Blue
+  m_I2C_intf.start();
+  m_I2C_intf.write(m_LED_driver_I2C_addr);
+  m_I2C_intf.write(P2);
+  m_I2C_intf.write(convertColorToPwmRegVal(color.B)); 
+  m_I2C_intf.stop();
+}
+
+void Display::clearLine(Line line)
+{
+  writeCompleteLine("", line);
+  setCursorPosition(line);
+}
+
+void Display::clearDisplay(void)
+{
+  m_I2C_intf.start();
+  m_I2C_intf.write(m_LCD_I2C_addr);
+  m_I2C_intf.write(ControlByte);     //No more control bytes will be sent
+  m_I2C_intf.write(ClearDisplay);
+  m_I2C_intf.stop();
+}
+
+void Display::initializeLCD(void)
+{
+  m_I2C_intf.start();
+  m_I2C_intf.write(m_LCD_I2C_addr);
+  m_I2C_intf.write(ControlByte);    //No more control bytes will be sent
+  //************************************************************************************
+  m_I2C_intf.write(0x38);               //Function Set IS[2:1] = 0,0 (&h38 = Single height font, 0x3C = double height font)
+  m_I2C_intf.write(0x39);               //Function Set IS[2:1] = (0,1)
+  //When IS[2:1]=(0,0): normal instruction be selected(refer instruction table 0)
+  //When IS[2:1]=(0,1): extension instruction be selected(refer instruction table 1 )
+  //When IS[2:1]=(1,0): extension instruction be selected(refer instruction table 2 )
+  m_I2C_intf.write(0x14);               //BIAS SET
+  m_I2C_intf.write(0x70);               //CONTRAST (was 0x78)
+  m_I2C_intf.write(0x5E);               //POWER/ICON CONTROL/CONTRAST (upper two bits)
+  m_I2C_intf.write(0x6D);               //FOLLOWER CONTROL
+  m_I2C_intf.write(Display_ON);      //Display on, cursor on, cursor position on
+  m_I2C_intf.write(ClearDisplay);    //Clear Display
+  m_I2C_intf.write(0x06);            //ENTRY MODE
+  //************************************************************************************
+  m_I2C_intf.stop();
+}
+
+void Display::writeCharacter(std::uint8_t character)
+{
+  m_I2C_intf.start();
+  m_I2C_intf.write(m_LCD_I2C_addr);
+  m_I2C_intf.write(ControlByte_RS_Set);	//No more control bytes will be sent
+  m_I2C_intf.write(character);	        //Display on, cursor on, cursor position on
+  m_I2C_intf.stop();	
+}
+
+void Display::writeText(const std::string & text)
+{
+  const char RETURN_CHAR = 0x16;
+  
+  std::size_t length = text.length();
+  if (length > lineLength)
+    length = lineLength;
+  
+  //Write to LCD
+  m_I2C_intf.start();
+  m_I2C_intf.write(m_LCD_I2C_addr);
+  m_I2C_intf.write(ControlByte_RS_Set);
+  
+  for(std::size_t i = 0; i < length; i++)
+  {
+    if(text[i] != RETURN_CHAR)
+      m_I2C_intf.write(text[i]);
+  }
+  
+  m_I2C_intf.stop();
+}
+
+void Display::setCursorPosition(Line line, std::size_t position)
+{  
+  if (position > (lineLength - 1)) // Set to last line character for values outside the upper bound
+    position = (lineLength - 1);
+
+  m_I2C_intf.start();
+  m_I2C_intf.write(m_LCD_I2C_addr);
+  m_I2C_intf.write(ControlByte); // No more control bytes will be sent
+  if(line == SecondLine) // Offset for second line
+    position += 0x40;
+  m_I2C_intf.write(SetDdramAddress | position);
+  m_I2C_intf.stop();
+}
+
+void Display::writeLine(const std::string & text, Line line)
+{  
+  setCursorPosition(line);
+  writeText(text);
+}
+
+void Display::writeCompleteLine(const std::string & text, Line line)
+{
+  // Add padding to user's string
+  std::string writeText(text);
+  if (writeText.length() < lineLength)
+    writeText.append(lineLength - writeText.length(), ' ');
+  
+  writeLine(writeText, line);
+}
+
+void Display::writeMessage(const std::string & message)
+{
+  if (message.length() > lineLength)
+  {
+    // Find split point
+    std::istringstream messageStream(message);
+    std::string word;
+    std::size_t splitIndex = 0;
+    do
+    {
+      if (word.length() > 0)
+        splitIndex += (word.length() + 1);
+      std::getline(messageStream, word, ' ');
+    } while ((splitIndex + word.length()) <= lineLength);
+    if (splitIndex == 0) // First word is too long
+    {
+      writeCompleteLine(message.substr(0, lineLength), FirstLine);
+      writeCompleteLine(message.substr(lineLength), SecondLine);
+    }
+    else
+    {
+      writeCompleteLine(message.substr(0, splitIndex - 1), FirstLine);
+      writeCompleteLine(message.substr(splitIndex), SecondLine);
+    }
+  }
+  else
+  {
+    writeCompleteLine(message, FirstLine);
+    writeCompleteLine("", SecondLine);
+  }
+}