MAXREFDES143#: DeepCover Embedded Security in IoT Authenticated Sensing & Notification

Dependencies:   MaximInterface mbed

The MAXREFDES143# is an Internet of Things (IoT) embedded security reference design, built to protect an industrial sensing node by means of authentication and notification to a web server. The hardware includes a peripheral module representing a protected sensor node monitoring operating temperature and remaining life of a filter (simulated through ambient light sensing) and an mbed shield representing a controller node responsible for monitoring one or more sensor nodes. The design is hierarchical with each controller node communicating data from connected sensor nodes to a web server that maintains a centralized log and dispatches notifications as necessary. The mbed shield contains a Wi-Fi module, a DS2465 coprocessor with 1-Wire® master function, an LCD, LEDs, and pushbuttons. The protected sensor node contains a DS28E15 authenticator, a DS7505 temperature sensor, and a MAX44009 light sensor. The mbed shield communicates to a web server by the onboard Wi-Fi module and to the protected sensor node with I2C and 1-Wire. The MAXREFDES143# is equipped with a standard shield connector for immediate testing using an mbed board such as the MAX32600MBED#. The simplicity of this design enables rapid integration into any star-topology IoT network requiring the heightened security with low overhead provided by the SHA-256 symmetric-key algorithm.

More information about the MAXREFDES143# is available on the Maxim Integrated website.

Revision:
15:8cc4cdea59da
Parent:
6:b6bafd0a7013
Child:
32:0a09505a656d
--- a/MAX44009.cpp	Mon Jun 06 10:49:15 2016 -0500
+++ b/MAX44009.cpp	Wed Jun 15 13:28:59 2016 -0500
@@ -44,16 +44,15 @@
 
 MAX44009::Result MAX44009::read_current_lux(double & lux) const
 {
-  char I2C_data;
-  uint8_t mantissa, exponent;
+  uint8_t I2C_data, mantissa, exponent;
   
   I2C_data = Lux_High_Byte_Reg;
-  if (m_I2C_interface.write(m_I2C_address, &I2C_data, 1, true) != I2C_OK)
+  if (m_I2C_interface.write(m_I2C_address, reinterpret_cast<char *>(&I2C_data), 1, true) != I2C_OK)
   {
     m_I2C_interface.stop();
     return Hardware_Failure;
   }
-  if (m_I2C_interface.read(m_I2C_address, &I2C_data, 1, true) != I2C_OK)
+  if (m_I2C_interface.read(m_I2C_address, reinterpret_cast<char *>(&I2C_data), 1, true) != I2C_OK)
   {
     m_I2C_interface.stop();
     return Hardware_Failure;
@@ -62,12 +61,12 @@
   exponent = (I2C_data >> 4);
   
   I2C_data = Lux_Low_Byte_Reg;
-  if (m_I2C_interface.write(m_I2C_address, &I2C_data, 1, true) != I2C_OK)
+  if (m_I2C_interface.write(m_I2C_address, reinterpret_cast<char *>(&I2C_data), 1, true) != I2C_OK)
   {
     m_I2C_interface.stop();
     return Hardware_Failure;
   }
-  if (m_I2C_interface.read(m_I2C_address, &I2C_data, 1, false) != I2C_OK)
+  if (m_I2C_interface.read(m_I2C_address, reinterpret_cast<char *>(&I2C_data), 1, false) != I2C_OK)
   {
     m_I2C_interface.stop();
     return Hardware_Failure;