Temporary Connector Reversed Version
Dependencies: UniGraphic mbed vt100
afero_poc15_180403R , J1 のピン配置を反転させたヴァージョンです。
Color2系を使用するためには以下のピンをジャンパで接続してください。
J1-D7 <-> J1-D0
J1-D6 <-> J1-D1
(調査中) また、こちらでテストした範囲では、
FRDM-KL25Z の V3.3 を、Modulo2 の VCC_3V3 ピンに接続してやる必要がありました。
尚、J1-D1, D0 を使用するために UART を無効にしているため
ログは表示されません。
TFTモジュールについて
aitendoのTFTモジュールはデフォルトでは8bit bus モードになっています。

半田のジャンパを変えて、SPIの設定にしてください。

サーミスタについて
POC1.5 では サーミスタは 25℃の時に抵抗値が 50.0kΩになる502AT-11 が
4.95kΩのプルアップ(実際は10kΩx2の並列)で使用されていました。
今回の試作では抵抗値が 10.0kΩの 103AT-11 が
5.1kΩのプルアップで使用されていますので、係数を合わせるために
SMTC502AT-11 のコンストラクタを
R0 = 10.0
R1 = 5.1
B = 3435
T0 = 298.15
で呼ぶように変更しました。
af_utils/af_attriburtes.cpp
- Committer:
- Rhyme
- Date:
- 2018-04-24
- Revision:
- 0:0b6732b53bf4
File content as of revision 0:0b6732b53bf4:
#include "mbed.h"
#include <ctype.h>
#include "af_attributes.h"
#include "edge_time.h"
#include "edge_sensor.h"
#include "edge_accel.h"
#include "edge_color.h"
#include "edge_temp.h"
#include "edge_pressure.h"
#include "edge_mgr.h"
#include "edge_reset_mgr.h"
// #include "SO1602A.h"
#include <ILI9341.h>
#include "pending.h"
// extern SO1602A *display ;
extern ILI9341 *display ;
extern pending_class *pending ;
static const af_attribute_type af_attr[] = {
/* ID, Description, Type, Size */
{ ATTR_SENSE_VAL, "Sensor Value", ATTRIBUTE_TYPE_UTF8S, 255 },
{ ATTR_ACCEL_PRESENT, "Accel Present", ATTRIBUTE_TYPE_BOOLEAN, 1 },
{ ATTR_ACCEL_ENABLE, "Accel Enable", ATTRIBUTE_TYPE_BOOLEAN, 1 },
{ ATTR_ACCEL_INTERVAL, "Accel Interval", ATTRIBUTE_TYPE_SINT16, 2 },
{ ATTR_ACCEL_VALUE, "Accel Value", ATTRIBUTE_TYPE_FIXED_15_16, 4},
/* first color sensor (VEML6040) and LED set */
{ ATTR_COLOR0_PRESENT, "Color1 Present", ATTRIBUTE_TYPE_BOOLEAN, 1 },
{ ATTR_COLOR0_ENABLE, "Color1 Enable", ATTRIBUTE_TYPE_BOOLEAN, 1 },
{ ATTR_COLOR0_INTERVAL, "Color1 Interval", ATTRIBUTE_TYPE_SINT16, 2 },
{ ATTR_COLOR0_TRIGMODE, "Color1 Trigger Mode", ATTRIBUTE_TYPE_SINT8, 1 },
{ ATTR_COLOR0_ITIME, "Color1 Integration Time", ATTRIBUTE_TYPE_SINT8, 1 },
{ ATTR_COLOR0_CALIBRATE, "Color1 Calibrate", ATTRIBUTE_TYPE_BOOLEAN, 1 },
{ ATTR_COLOR0_PWM_R, "Color1 PWM R", ATTRIBUTE_TYPE_SINT32, 4 },
{ ATTR_COLOR0_PWM_G, "Color1 PWM G", ATTRIBUTE_TYPE_SINT32, 4 },
{ ATTR_COLOR0_PWM_B, "Color1 PWM B", ATTRIBUTE_TYPE_SINT32, 4 },
{ ATTR_COLOR0_PWM_PERIOD, "Color1 PWM Period", ATTRIBUTE_TYPE_SINT16, 2 },
{ ATTR_COLOR0_PWM_TARGET, "Color1 PWM Target", ATTRIBUTE_TYPE_SINT16, 2 },
{ ATTR_COLOR0_R_VALUE, "Color1 R", ATTRIBUTE_TYPE_SINT16, 2 },
{ ATTR_COLOR0_G_VALUE, "Color1 G", ATTRIBUTE_TYPE_SINT16, 2 },
{ ATTR_COLOR0_B_VALUE, "Color1 B", ATTRIBUTE_TYPE_SINT16, 2 },
/* second color sensor (VEML6040) and LED set */
{ ATTR_COLOR1_PRESENT, "Color2 Present", ATTRIBUTE_TYPE_BOOLEAN, 1 },
{ ATTR_COLOR1_ENABLE, "Color2 Enable", ATTRIBUTE_TYPE_BOOLEAN, 1 },
{ ATTR_COLOR1_INTERVAL, "Color2 Interval", ATTRIBUTE_TYPE_SINT16, 2 },
{ ATTR_COLOR1_TRIGMODE, "Color2 Trigger Mode", ATTRIBUTE_TYPE_SINT8, 1 },
{ ATTR_COLOR1_ITIME, "Color2 Integration Time", ATTRIBUTE_TYPE_SINT8, 1 },
{ ATTR_COLOR1_CALIBRATE, "Color2 Calibrate", ATTRIBUTE_TYPE_BOOLEAN, 1 },
{ ATTR_COLOR1_PWM_R, "Color2 PWM R", ATTRIBUTE_TYPE_SINT32, 4 },
{ ATTR_COLOR1_PWM_G, "Color2 PWM G", ATTRIBUTE_TYPE_SINT32, 4 },
{ ATTR_COLOR1_PWM_B, "Color2 PWM B", ATTRIBUTE_TYPE_SINT32, 4 },
{ ATTR_COLOR1_PWM_PERIOD, "Color2 PWM Period", ATTRIBUTE_TYPE_SINT16, 2 },
{ ATTR_COLOR1_PWM_TARGET, "Color2 PWM Target", ATTRIBUTE_TYPE_SINT16, 2 },
{ ATTR_COLOR1_R_VALUE, "Color2 R", ATTRIBUTE_TYPE_SINT16, 2 },
{ ATTR_COLOR1_G_VALUE, "Color2 G", ATTRIBUTE_TYPE_SINT16, 2 },
{ ATTR_COLOR1_B_VALUE, "Color2 B", ATTRIBUTE_TYPE_SINT16, 2 },
/* first temperature sensor (LM75B) */
{ ATTR_TEMP0_PRESENT, "Temp0 Present", ATTRIBUTE_TYPE_BOOLEAN, 1 },
{ ATTR_TEMP0_ENABLE, "Temp0 Enable", ATTRIBUTE_TYPE_BOOLEAN, 1 },
{ ATTR_TEMP0_INTERVAL, "Temp0 Interval", ATTRIBUTE_TYPE_SINT16, 2 },
{ ATTR_TEMP0_VALUE, "Temp0 Value", ATTRIBUTE_TYPE_FIXED_15_16, 4},
/* second temperature sensor (SMTC502AT/Before) */
{ ATTR_TEMP1_PRESENT, "Temp1 Present", ATTRIBUTE_TYPE_BOOLEAN, 1 },
{ ATTR_TEMP1_ENABLE, "Temp1 Enable", ATTRIBUTE_TYPE_BOOLEAN, 1 },
{ ATTR_TEMP1_INTERVAL, "Temp1 Interval", ATTRIBUTE_TYPE_SINT16, 2 },
{ ATTR_TEMP1_VALUE, "Temp1 Value", ATTRIBUTE_TYPE_FIXED_15_16, 4},
/* third temperature sensor (SMTC502AT/After) */
{ ATTR_TEMP2_PRESENT, "Temp2 Present", ATTRIBUTE_TYPE_BOOLEAN, 1 },
{ ATTR_TEMP2_ENABLE, "Temp2 Enable", ATTRIBUTE_TYPE_BOOLEAN, 1 },
{ ATTR_TEMP2_INTERVAL, "Temp2 Interval", ATTRIBUTE_TYPE_SINT16, 2 },
{ ATTR_TEMP2_VALUE, "Temp2 Value", ATTRIBUTE_TYPE_FIXED_15_16, 4},
/* fouth temperateure sensor (LM75B) */
{ ATTR_TEMP3_PRESENT, "Temp3 Present", ATTRIBUTE_TYPE_BOOLEAN, 1 },
{ ATTR_TEMP3_ENABLE, "Temp3 Enable", ATTRIBUTE_TYPE_BOOLEAN, 1 },
{ ATTR_TEMP3_INTERVAL, "Temp3 Interval", ATTRIBUTE_TYPE_SINT16, 2 },
{ ATTR_TEMP3_VALUE, "Temp3 Value", ATTRIBUTE_TYPE_FIXED_15_16, 4},
/* Gas Pressure sensor (PSE530) */
{ ATTR_GAS_PRESENT, "Gas Pressure Present", ATTRIBUTE_TYPE_BOOLEAN, 1 },
{ ATTR_GAS_ENABLE, "Gas Pressure Enable", ATTRIBUTE_TYPE_BOOLEAN, 1 },
{ ATTR_GAS_INTERVAL, "Gas Pressure Interval", ATTRIBUTE_TYPE_SINT16, 2 },
{ ATTR_GAS_VALUE, "Gas Pressure Value", ATTRIBUTE_TYPE_FIXED_15_16, 4},
{ ATTR_GAS_THR_MODE, "Gas Press Threshold Mode", ATTRIBUTE_TYPE_SINT8, 1 },
{ ATTR_GAS_THR_HIGH, "Gas Press High Thresh", ATTRIBUTE_TYPE_SINT16, 2 },
{ ATTR_GAS_THR_LOW, "Gas Press Low Thresh", ATTRIBUTE_TYPE_SINT16, 2 },
/* Software Reset Request */
{ ATTR_SOFTWARE_RESET, "Software Reset", ATTRIBUTE_TYPE_BOOLEAN, 1 },
{ ATTR_DISPLAY_MODE, "Display Mode", ATTRIBUTE_TYPE_SINT8, 1 },
{ ATTR_MCU_RESET_REASON, "MCU Reset Reason", ATTRIBUTE_TYPE_UTF8S, 64 },
{ ATTR_LED, "LED", ATTRIBUTE_TYPE_SINT16, 2 },
{ ATTR_IO0, "I/O 0", ATTRIBUTE_TYPE_SINT64, 8 },
{ ATTR_IO1, "I/O 1", ATTRIBUTE_TYPE_SINT64, 8 },
{ ATTR_IO2, "I/O 2", ATTRIBUTE_TYPE_SINT64, 8 },
{ ATTR_BUTTON, "BUTTON", ATTRIBUTE_TYPE_BOOLEAN, 2 },
{ ATTR_IO3, "I/O 3", ATTRIBUTE_TYPE_SINT64, 8 },
{ ATTR_BOOT_LOADER_VER, "Bootloader Version", ATTRIBUTE_TYPE_SINT64, 8 },
{ ATTR_BLE_STACK_VER, "BLE Stack Version", ATTRIBUTE_TYPE_SINT64, 8 },
{ ATTR_FW_APP_VER, "FW Application Version", ATTRIBUTE_TYPE_SINT64, 8 },
{ ATTR_DEVICE_DESC, "Device Description", ATTRIBUTE_TYPE_SINT64, 8 },
{ ATTR_WIFI_VER, "Wi-Fi chip", ATTRIBUTE_TYPE_SINT64, 8 },
{ ATTR_OFFLINE_SCHED, "Offline Schedules enable", ATTRIBUTE_TYPE_SINT16, 2 },
{ ATTR_SECURITY_ENABLED, "Security Enabled", ATTRIBUTE_TYPE_SINT8, 1 }, /* ? */
{ ATTR_UTC_OFFSET, "UTC offset data", ATTRIBUTE_TYPE_BYTES, 8 },
{ ATTR_CONFIGURES_SSID, "Configured SSID", ATTRIBUTE_TYPE_UTF8S, 10 }, /* ? */
{ ATTR_WIFI_BARS, "Wi-Fi Bars", ATTRIBUTE_TYPE_SINT8, 1 },
{ ATTR_WIFI_STDY_STATE, "Wi-Fi Steady State", ATTRIBUTE_TYPE_SINT8, 1 },
{ ATTR_COMMAND, "Command", ATTRIBUTE_TYPE_BYTES, 8 }, /* ? */
{ ATTR_ASR_STATE, "ASR State", ATTRIBUTE_TYPE_SINT8, 1 },
{ ATTR_LOW_BATTERY, "Low Battery Warning", ATTRIBUTE_TYPE_SINT8, 1 },
{ ATTR_LINKED_TIMESTAMP, "Linked Timestamp", ATTRIBUTE_TYPE_SINT32, 4 },
{ ATTR_ATTR_ACK, "Attribute ACK", ATTRIBUTE_TYPE_SINT16, 8 },
{ ATTR_REBOOT_REASON, "Reboot Reason", ATTRIBUTE_TYPE_UTF8S, 100 },
{ ATTR_BLE_COMMS, "BLE Comms", ATTRIBUTE_TYPE_BYTES, 12 },
{ ATTR_MCU_INTERFACE, "MCU Interface", ATTRIBUTE_TYPE_SINT8, 1 },
{ 0, 0, 0, 0 }
} ;
int get_af_attr(uint16_t id)
{
int i ;
for (i = 0 ; af_attr[i].id != 0 ; i++ ) {
if (id == af_attr[i].id) {
break ;
}
}
return (i) ;
}
void print_af_error(int resultCode)
{
switch(resultCode) {
case afSUCCESS:
printf("Operation completed successfully\n") ;
break ;
case afERROR_NO_SUCH_ATTRIBUTE:
printf("Request was made for unknown attribute id\n") ;
break ;
case afERROR_BUSY:
printf("Request already in progress, try again\n") ;
break ;
case afERROR_INVALID_COMMAND:
printf("Command could not be parsed\n") ;
break ;
case afERROR_QUEUE_OVERFLOW:
printf("Queue is full\n") ;
break ;
case afERROR_QUEUE_UNDERFLOW:
printf("Queue is empty\n") ;
break ;
case afERROR_INVALID_PARAM:
printf("Bad input parameter\n") ;
break ;
default:
printf("Unknown error code %d\n", resultCode) ;
break ;
}
}
void af_print_values(
const uint8_t requestId,
const uint16_t attributeId,
const uint16_t valueLen,
const uint8_t *value
)
{
int i, id ;
id = get_af_attr(attributeId) ;
if (af_attr[id].id != 0) {
printf(af_attr[id].description) ;
printf(" : ") ;
switch(af_attr[id].attribute_type) {
case ATTRIBUTE_TYPE_BOOLEAN:
case ATTRIBUTE_TYPE_SINT8:
if (valueLen >= 1) {
printf("%02X\n", value[0]) ;
}
break ;
case ATTRIBUTE_TYPE_SINT16:
if (valueLen >= 2) {
printf("%02X%02X\n", value[1], value[0]) ;
}
break ;
case ATTRIBUTE_TYPE_SINT32:
if (valueLen >= 4) {
printf("%02X%02X%02X%02X\n",
value[3],value[2],value[1],value[0]) ;
}
break ;
case ATTRIBUTE_TYPE_SINT64:
if (valueLen >= 8) {
printf("%02X%02X %02X%02X %02X%02X %02X%02X\n",
value[7], value[6], value[5], value[4],
value[3], value[2], value[1], value[0]) ;
}
break ;
case ATTRIBUTE_TYPE_UTF8S:
if (valueLen > 0) {
for (i = 0 ; i < valueLen ; i++) {
if (isprint(value[i])) {
printf("%c", value[i]) ;
} else if (value[i] == 0) { /* string terminator NULL */
break ;
} else {
printf("\'%02X\'",value[i]) ;
}
}
printf("\n") ;
}
break ;
case ATTRIBUTE_TYPE_BYTES:
default:
if (valueLen > 0) {
for (i = 0 ; i < valueLen ; i++ ) {
printf("%02X ", value[i]) ;
}
printf("\n") ;
}
break ;
}
} else {
if (valueLen > 0) {
for (i = 0 ; i < valueLen ; i++ ) {
printf("%02X ", value[i]) ;
}
printf("\n") ;
}
}
// printf("\n") ;
}
void assignAttribute(
const uint8_t requestId,
const uint16_t attributeId,
const uint16_t valueLen,
const uint8_t *value,
bool fromRequest
)
{
switch(attributeId) {
case ATTR_LINKED_TIMESTAMP: /* timestamp */
set_time(valueLen, value) ; /* 68 us */
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
printf("timestampe = ") ;
print_date_wd(¤t_time) ;
// print_time(¤t_time) ;
printf("\n") ;
break ;
case ATTR_SOFTWARE_RESET: /* software reset requested! */
if (value[0]) {
reset_watch_dog() ;
printf("Software Reset Requested!\n") ;
if (display != 0) {
display->cls() ;
display->locate(0,0) ;
display->printf("System Rebooting!") ;
}
reset_watch_dog() ;
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
wait(0.5) ;
reset_watch_dog() ;
reboot_edge() ;
}
break ;
case ATTR_DISPLAY_MODE:
if (display_mode != value[0]) {
display_mode = value[0] ;
if (display) {
display->BusEnable(true) ;
display->cls() ;
display->BusEnable(false) ;
}
}
reset_watch_dog() ;
switch(value[0]) {
case DISPLAY_MODE_GAS: /* gas pressure monitor only */
break ;
case DISPLAY_MODE_SUMMARY: /* summary */
break ;
case DISPLAY_MODE_CHART: /* chart mode */
if (display) {
draw_all_chart_frame() ;
}
break ;
case DISPLAY_MODE_OFF: /* display off */
default:
display_mode = DISPLAY_MODE_OFF ;
break ;
}
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
break ;
case ATTR_ACCEL_ENABLE: /* accel enable */
if (sensor[SENSOR_ID_ACCEL]) {
if (value[0]) {
sensor[SENSOR_ID_ACCEL]->reset() ;
sensor[SENSOR_ID_ACCEL]->enable() ;
} else if (sensor[SENSOR_ID_ACCEL]){
sensor[SENSOR_ID_ACCEL]->disable() ;
}
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
case ATTR_ACCEL_INTERVAL:
if (sensor[SENSOR_ID_ACCEL]) {
sensor[SENSOR_ID_ACCEL]->setInterval((value[1] << 8) | value[0]) ;
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
case ATTR_COLOR0_ENABLE: /* color0 enable */
if (sensor[SENSOR_ID_COLOR1]) {
if (value[0]) {
sensor[SENSOR_ID_COLOR1]->reset() ;
sensor[SENSOR_ID_COLOR1]->enable() ;
} else {
sensor[SENSOR_ID_COLOR1]->disable() ;
}
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
case ATTR_COLOR0_INTERVAL:
if (sensor[SENSOR_ID_COLOR1]) {
sensor[SENSOR_ID_COLOR1]->setInterval((value[1] << 8) | value[0]) ;
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
case ATTR_COLOR0_TRIGMODE: /* color0 config */
if (sensor[SENSOR_ID_COLOR1]) {
uint8_t config = ((edge_color*)sensor[SENSOR_ID_COLOR1])->getConfig() & 0x70 ;
if (value[0]) {
config = config | 0x06 ;
}
((edge_color*)sensor[SENSOR_ID_COLOR1])->setConfig(config) ;
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
case ATTR_COLOR0_ITIME: /* color0 config */
if (sensor[SENSOR_ID_COLOR1]) {
uint8_t config = ((edge_color*)sensor[SENSOR_ID_COLOR1])->getConfig() & 0x07 ;
config = (value[0] << 4) | config ;
((edge_color*)sensor[SENSOR_ID_COLOR1])->setConfig(config) ;
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
case ATTR_COLOR0_PWM_PERIOD: /* color0 pwm period */
if (sensor[SENSOR_ID_COLOR1]) {
((edge_color*)sensor[SENSOR_ID_COLOR1])->set_pwm_period((value[1] << 8) | value[0]) ;
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
case ATTR_COLOR0_PWM_TARGET: /* color0 pwm calibration target */
if (sensor[SENSOR_ID_COLOR1]) {
color0_target[0] = (value[1] << 8) | value[0] ;
color0_target[1] = color0_target[0] ;
color0_target[2] = color0_target[1] ;
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
#if 1 /* do not handle calibration twice */
case ATTR_COLOR0_CALIBRATE: /* calibrate color0 */
if (sensor[SENSOR_ID_COLOR1] && value[0] && fromRequest) { /* do calibration */
((edge_color*)sensor[SENSOR_ID_COLOR1])->request_calibration() ;
}
break ;
#endif
case ATTR_COLOR0_PWM_R:
if (sensor[SENSOR_ID_COLOR1]) {
((edge_color*)sensor[SENSOR_ID_COLOR1])->setPwmR( (value[1] << 8) | value[0] ) ;
// color0_pwm[0] = (value[1] << 8) | value[0] ;
}
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
break ;
case ATTR_COLOR0_PWM_G:
if (sensor[SENSOR_ID_COLOR1]) {
((edge_color*)sensor[SENSOR_ID_COLOR1])->setPwmG( (value[1] << 8) | value[0] ) ;
// color0_pwm[1] = (value[1] << 8) | value[0] ;
}
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
break ;
case ATTR_COLOR0_PWM_B:
if (sensor[SENSOR_ID_COLOR1]) {
((edge_color*)sensor[SENSOR_ID_COLOR1])->setPwmB( (value[1] << 8) | value[0] ) ;
// color0_pwm[2] = (value[1] << 8) | value[0] ;
}
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
break ;
case ATTR_COLOR1_ENABLE: /* color1 enable */
if (sensor[SENSOR_ID_COLOR2]) {
if (value[0]) {
sensor[SENSOR_ID_COLOR2]->reset() ;
sensor[SENSOR_ID_COLOR2]->enable() ;
} else {
sensor[SENSOR_ID_COLOR2]->disable() ;
}
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
case ATTR_COLOR1_INTERVAL:
if (sensor[SENSOR_ID_COLOR2]) {
sensor[SENSOR_ID_COLOR2]->setInterval((value[1] << 8) | value[0]) ;
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
case ATTR_COLOR1_TRIGMODE: /* color0 config */
if (sensor[SENSOR_ID_COLOR2]) {
uint8_t config = ((edge_color*)sensor[SENSOR_ID_COLOR2])->getConfig() & 0x70 ;
if (value[0]) {
config = config | 0x06 ;
}
((edge_color*)sensor[SENSOR_ID_COLOR2])->setConfig(config) ;
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
case ATTR_COLOR1_ITIME: /* color0 config */
if (sensor[SENSOR_ID_COLOR2]) {
uint8_t config = ((edge_color*)sensor[SENSOR_ID_COLOR2])->getConfig() & 0x07 ;
config = (value[0] << 4) | config ;
((edge_color*)sensor[SENSOR_ID_COLOR2])->setConfig(config) ;
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
case ATTR_COLOR1_PWM_PERIOD: /* color0 pwm period */
if (sensor[SENSOR_ID_COLOR2]) {
((edge_color*)sensor[SENSOR_ID_COLOR2])->set_pwm_period((value[1] << 8) | value[0]) ;
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
case ATTR_COLOR1_PWM_TARGET: /* color0 pwm calibration target */
if (sensor[SENSOR_ID_COLOR2]) {
color1_target[0] = (value[1] << 8) | value[0] ;
color1_target[1] = color1_target[0] ;
color1_target[2] = color1_target[1] ;
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
#if 1 /* do not handle calibration twice */
case ATTR_COLOR1_CALIBRATE: /* calibrate color1 */
if (sensor[SENSOR_ID_COLOR2] && value[0] && fromRequest) { /* do calibration! */
((edge_color*)sensor[SENSOR_ID_COLOR2])->request_calibration() ;
}
break ;
#endif
case ATTR_COLOR1_PWM_R:
if (sensor[SENSOR_ID_COLOR2]) {
((edge_color*)sensor[SENSOR_ID_COLOR2])->setPwmR( (value[1] << 8) | value[0] ) ;
// color1_pwm[0] = (value[1] << 8) | value[0] ;
}
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
break ;
case ATTR_COLOR1_PWM_G:
if (sensor[SENSOR_ID_COLOR2]) {
((edge_color*)sensor[SENSOR_ID_COLOR2])->setPwmG( (value[1] << 8) | value[0] ) ;
// color1_pwm[1] = (value[1] << 8) | value[0] ;
}
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
break ;
case ATTR_COLOR1_PWM_B:
if (sensor[SENSOR_ID_COLOR2]) {
((edge_color*)sensor[SENSOR_ID_COLOR2])->setPwmB( (value[1] << 8) | value[0] ) ;
// color1_pwm[2] = (value[1] << 8) | value[0] ;
}
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
break ;
case ATTR_TEMP0_ENABLE: /* temp0 is used to control temp-sensors */
if (sensor[SENSOR_ID_TEMP]) {
if (value[0]) {
sensor[SENSOR_ID_TEMP]->reset() ;
sensor[SENSOR_ID_TEMP]->enable() ;
} else {
sensor[SENSOR_ID_TEMP]->disable() ;
}
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
case ATTR_TEMP0_INTERVAL:
if (sensor[SENSOR_ID_TEMP]) {
sensor[SENSOR_ID_TEMP]->setInterval((value[1] << 8) | value[0]) ;
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
case ATTR_TEMP3_ENABLE: /* temp3 enable */
break ;
case ATTR_GAS_ENABLE: /* pressure enable */
if (sensor[SENSOR_ID_PRESS]) {
if (value[0]) {
sensor[SENSOR_ID_PRESS]->reset() ;
sensor[SENSOR_ID_PRESS]->enable() ;
} else {
sensor[SENSOR_ID_PRESS]->disable() ;
}
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
case ATTR_GAS_INTERVAL:
if (sensor[SENSOR_ID_PRESS]) {
sensor[SENSOR_ID_PRESS]->setInterval((value[1] << 8) | value[0]) ;
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
case ATTR_GAS_THR_MODE:
if (sensor[SENSOR_ID_PRESS]) {
((edge_pressure*)sensor[SENSOR_ID_PRESS])->set_thr_mode(value[0]) ;
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
case ATTR_GAS_THR_HIGH:
if (sensor[SENSOR_ID_PRESS]) {
((edge_pressure*)sensor[SENSOR_ID_PRESS])->set_thr_high((value[1] << 8) | value[0]) ;
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
case ATTR_GAS_THR_LOW:
if (sensor[SENSOR_ID_PRESS]) {
((edge_pressure*)sensor[SENSOR_ID_PRESS])->set_thr_low((value[1] << 8) | value[0]) ;
if (fromRequest) afero->setAttributeComplete(requestId, attributeId, valueLen, value) ;
}
break ;
default:
break ;
}
}
/*
* Callback that allows ASR to request an MCU attribute be changed.
* You should define this function in your MCU firmware to perform application-specific actions
* your code must take (e.g., updating the state of the hardware),
* in light of the attribute value change.
*/
void attributeChangeRequest(
const uint8_t requestId,
const uint16_t attributeId,
const uint16_t valueLen,
const uint8_t *value
)
{
uint32_t timestamp = edge_time ;
if ((pending != 0)&&(pending->request->requestId == requestId)) {
pending->replied_time = timestamp ;
}
ts2time(timestamp, ¤t_time) ; /* 12 us */
if (verbos) {
print_time(¤t_time) ;
printf(" %5d ASR requested [%d] : ", attributeId, requestId) ;
af_print_values(requestId, attributeId, valueLen, value) ;
}
assignAttribute(requestId, attributeId, valueLen, value, true) ;
// af_print_values(requestId, attributeId, valueLen, value) ;
if ((pending != 0)&&(pending->request->requestId == requestId)) {
printf("Request [%d] replied in %d sec!\n", requestId, pending->replied_time - pending->submit_time) ;
delete pending ;
pending = 0 ;
}
}
/*
* Application callback that allows afLib to notify that an attribute has changed.
* This method will be called in response to a getAttribute call from the application
* and whenever a ASR module attribute changes.
*/
void attributeUpdatedReport(
const uint8_t requestId,
const uint16_t attributeId,
const uint16_t valueLen,
const uint8_t *value
)
{
uint32_t timestamp = edge_time ;
int result ;
if ((pending != 0)&&(pending->request->requestId == requestId)) {
pending->replied_time = timestamp ;
}
ts2time(timestamp, ¤t_time) ; /* 12us */
if (verbos) {
print_time(¤t_time) ;
printf(" %5d ASR reported [%d]: ", attributeId, requestId) ;
af_print_values(requestId, attributeId, valueLen, value) ;
}
switch(attributeId) {
case ATTR_LINKED_TIMESTAMP:
set_time(valueLen, value) ; /* 68 us */
printf("timestampe = ") ;
print_date_wd(¤t_time) ;
// print_time(¤t_time) ;
printf("\n") ;
break ;
case ATTR_WIFI_STDY_STATE:
gConnected = false ;
printf("WiFi Steady State: ") ;
switch(value[0]) {
case 0: printf("Not Connected\n") ; break ;
case 1: printf("Pending\n") ; break ;
case 2:
printf("Connected\n") ;
gConnected = true ; // the only case Connected state is OK
break ;
case 3: printf("Unknown Failure\n") ; break ;
case 4: printf("Association Failed\n") ; break ;
case 5: printf("Handshake Failed\n") ; break ;
case 6: printf("Echo Failed\n") ; break ;
case 7: printf("SSID Not Found\n") ; break ;
case 8: printf("NTP Failed\n") ; break ;
default: printf("Unknown [%d]\n", value[0]) ; break ;
}
break ;
case ATTR_REBOOT_REASON:
printf("Reboot Reason: ") ;
switch(value[0]) {
case 1: printf("Reset pin asserted\n") ; break ;
case 2: printf("Watchdog reset\n") ; break ;
case 4: printf("Software reset\n") ; break ;
case 8: printf("CPU Lock up\n") ; break ;
default: printf("Unknown [%d]\n", value[0]) ; break ;
}
if (reboot_requested) {
printf("Unexpected ASR Reboot. Rebooting MCU.\n") ;
wait_ms(100) ;
reboot_edge() ;
}
break ;
case ATTR_MCU_INTERFACE:
printf("MCU Interface: ") ;
switch(value[0]) {
case 0: printf("No MCU\n") ; break ;
case 1: printf("SPI Slave\n") ; break ;
case 2: printf("UART\n") ; break ;
default: printf("Unknown\n") ; break ;
}
break ;
case AF_SYSTEM_ASR_STATE:
printf("ASR state: ") ;
switch(value[0]) {
case MODULE_STATE_REBOOTED:
gLinked = false ;
printf("Rebooted\n") ;
// wait_ms(100) ; /* */
if (edge_mgr_status == EDGE_MGR_RUNNING) {
result = afero->getAttribute(ATTR_REBOOT_REASON) ;
reboot_requested = true ;
// reboot_edge() ;
}
break ;
case MODULE_STATE_LINKED:
if (gLinked == false) { /* new link established */
result = afero->getAttribute(ATTR_LINKED_TIMESTAMP) ;
if (result != afSUCCESS) {
printf("getAttriute for ATTR_LINKED_TIMESTAMP failed\n") ;
}
}
gLinked = true ;
printf("Linked\n") ;
break ;
case MODULE_STATE_UPDATING:
gLinked = true ;
printf("Updating\n") ;
if (display) {
display->cls() ;
display->locate(5, 5) ;
display->printf("FW Updating...") ;
}
break ;
case MOUDLE_STATE_UPDATE_READY:
gLinked = false ;
printf("Update ready - rebooting\n") ;
if (display) {
display->cls() ;
display->locate(5, 5) ;
display->printf("Rebooting...") ;
}
while(afero->setAttribute32(AF_SYSTEM_COMMAND, MODULE_COMMAND_REBOOT) != afSUCCESS) {
afero->loop() ;
wait_us(100) ;
}
reboot_edge() ;
break ;
default:
break ;
}
break ;
default:
assignAttribute(requestId, attributeId, valueLen, value, false) ;
break ;
}
if ((pending != 0)&&(pending->request->requestId == requestId)) {
printf("Request [%d] replied in %d sec!\n", requestId, pending->replied_time - pending->submit_time) ;
delete pending ;
pending = 0 ;
}
}
La Suno