LSM6DSO accelerometer and gyroscope sensor library
Dependencies: X_NUCLEO_COMMON ST_INTERFACES
LSM6DSOSensor.cpp
- Committer:
- martlefebvre94
- Date:
- 2019-09-17
- Revision:
- 5:213250c75a9e
- Parent:
- 4:bcf0cf6e43a7
File content as of revision 5:213250c75a9e:
/**
******************************************************************************
* @file LSM6DSOSensor.cpp
* @author SRA
* @version V1.0.0
* @date February 2019
* @brief Implementation of an LSM6DSO Inertial Measurement Unit (IMU) 6 axes
* sensor.
******************************************************************************
* @attention
*
* <h2><center>© COPYRIGHT(c) 2019 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "LSM6DSOSensor.h"
/* Class Implementation ------------------------------------------------------*/
/** Constructor
* @param spi object of an helper class which handles the SPI peripheral
* @param cs_pin the chip select pin
* @param int1_pin the interrupt 1 pin
* @param int2_pin the interrupt 2 pin
* @param spi_type the SPI type
*/
LSM6DSOSensor::LSM6DSOSensor(SPI *spi, PinName cs_pin, PinName int1_pin, PinName int2_pin, SPI_type_t spi_type) : _dev_spi(spi), _cs_pin(cs_pin), _int1_irq(int1_pin), _int2_irq(int2_pin), _spi_type(spi_type)
{
assert(spi);
if (cs_pin == NC) {
printf("ERROR LSM6DSO CS MUST NOT BE NC\n\r");
_dev_spi = NULL;
_dev_i2c = NULL;
return;
}
_reg_ctx.write_reg = LSM6DSO_io_write;
_reg_ctx.read_reg = LSM6DSO_io_read;
_reg_ctx.handle = (void *)this;
_cs_pin = 1;
_dev_i2c = NULL;
_address = 0;
if (_spi_type == SPI3W) {
/* Enable SPI 3-Wires on the component */
uint8_t data = 0x0C;
lsm6dso_write_reg(&_reg_ctx, LSM6DSO_CTRL3_C, &data, 1);
}
}
/** Constructor
* @param i2c object of an helper class which handles the I2C peripheral
* @param address the address of the component's instance
* @param int1_pin the interrupt 1 pin
* @param int2_pin the interrupt 2 pin
*/
LSM6DSOSensor::LSM6DSOSensor(DevI2C *i2c, uint8_t address, PinName int1_pin, PinName int2_pin) : _dev_i2c(i2c), _address(address), _cs_pin(NC), _int1_irq(int1_pin), _int2_irq(int2_pin)
{
assert(i2c);
_dev_spi = NULL;
_reg_ctx.write_reg = LSM6DSO_io_write;
_reg_ctx.read_reg = LSM6DSO_io_read;
_reg_ctx.handle = (void *)this;
}
/**
* @brief Initializing the component
* @param init pointer to device specific initalization structure
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::init(void *init)
{
/* Disable I3C */
if (lsm6dso_i3c_disable_set(&_reg_ctx, LSM6DSO_I3C_DISABLE) != 0) {
return 1;
}
/* Enable register address automatically incremented during a multiple byte
access with a serial interface. */
if (lsm6dso_auto_increment_set(&_reg_ctx, PROPERTY_ENABLE) != 0) {
return 1;
}
/* Enable BDU */
if (lsm6dso_block_data_update_set(&_reg_ctx, PROPERTY_ENABLE) != 0) {
return 1;
}
/* FIFO mode selection */
if (lsm6dso_fifo_mode_set(&_reg_ctx, LSM6DSO_BYPASS_MODE) != 0) {
return 1;
}
/* Output data rate selection - power down. */
if (lsm6dso_xl_data_rate_set(&_reg_ctx, LSM6DSO_XL_ODR_OFF) != 0) {
return 1;
}
/* Full scale selection. */
if (lsm6dso_xl_full_scale_set(&_reg_ctx, LSM6DSO_2g) != 0) {
return 1;
}
/* Output data rate selection - power down. */
if (lsm6dso_gy_data_rate_set(&_reg_ctx, LSM6DSO_GY_ODR_OFF) != 0) {
return 1;
}
/* Full scale selection. */
if (lsm6dso_gy_full_scale_set(&_reg_ctx, LSM6DSO_2000dps) != 0) {
return 1;
}
/* Select default output data rate. */
_x_last_odr = LSM6DSO_XL_ODR_104Hz;
/* Select default output data rate. */
_g_last_odr = LSM6DSO_GY_ODR_104Hz;
_x_is_enabled = 0;
_g_is_enabled = 0;
return 0;
}
/**
* @brief Read component ID
* @param id the WHO_AM_I value
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::read_id(uint8_t *id)
{
if (lsm6dso_device_id_get(&_reg_ctx, id) != 0) {
return 1;
}
return 0;
}
/**
* @brief Enable the LSM6DSO accelerometer sensor
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::enable_x()
{
/* Check if the component is already enabled */
if (_x_is_enabled == 1U) {
return 0;
}
/* Output data rate selection. */
if (lsm6dso_xl_data_rate_set(&_reg_ctx, _x_last_odr) != 0) {
return 1;
}
_x_is_enabled = 1;
return 0;
}
/**
* @brief Disable the LSM6DSO accelerometer sensor
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::disable_x()
{
/* Check if the component is already disabled */
if (_x_is_enabled == 0U) {
return 0;
}
/* Get current output data rate. */
if (lsm6dso_xl_data_rate_get(&_reg_ctx, &_x_last_odr) != 0) {
return 1;
}
/* Output data rate selection - power down. */
if (lsm6dso_xl_data_rate_set(&_reg_ctx, LSM6DSO_XL_ODR_OFF) != 0) {
return 1;
}
_x_is_enabled = 0;
return 0;
}
/**
* @brief Get the LSM6DSO accelerometer sensor sensitivity
* @param sensitivity pointer where the sensitivity is written
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_x_sensitivity(float *sensitivity)
{
int ret = 0;
lsm6dso_fs_xl_t full_scale;
/* Read actual full scale selection from sensor. */
if (lsm6dso_xl_full_scale_get(&_reg_ctx, &full_scale) != 0) {
return 1;
}
/* Store the sensitivity based on actual full scale. */
switch (full_scale) {
case LSM6DSO_2g:
*sensitivity = LSM6DSO_ACC_SENSITIVITY_FS_2G;
break;
case LSM6DSO_4g:
*sensitivity = LSM6DSO_ACC_SENSITIVITY_FS_4G;
break;
case LSM6DSO_8g:
*sensitivity = LSM6DSO_ACC_SENSITIVITY_FS_8G;
break;
case LSM6DSO_16g:
*sensitivity = LSM6DSO_ACC_SENSITIVITY_FS_16G;
break;
default:
ret = 1;
break;
}
return ret;
}
/**
* @brief Get the LSM6DSO accelerometer sensor output data rate
* @param odr pointer where the output data rate is written
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_x_odr(float *odr)
{
int ret = 0;
lsm6dso_odr_xl_t odr_low_level;
/* Get current output data rate. */
if (lsm6dso_xl_data_rate_get(&_reg_ctx, &odr_low_level) != 0) {
return 1;
}
switch (odr_low_level) {
case LSM6DSO_XL_ODR_OFF:
*odr = 0.0f;
break;
case LSM6DSO_XL_ODR_6Hz5:
*odr = 6.5f;
break;
case LSM6DSO_XL_ODR_12Hz5:
*odr = 12.5f;
break;
case LSM6DSO_XL_ODR_26Hz:
*odr = 26.0f;
break;
case LSM6DSO_XL_ODR_52Hz:
*odr = 52.0f;
break;
case LSM6DSO_XL_ODR_104Hz:
*odr = 104.0f;
break;
case LSM6DSO_XL_ODR_208Hz:
*odr = 208.0f;
break;
case LSM6DSO_XL_ODR_417Hz:
*odr = 417.0f;
break;
case LSM6DSO_XL_ODR_833Hz:
*odr = 833.0f;
break;
case LSM6DSO_XL_ODR_1667Hz:
*odr = 1667.0f;
break;
case LSM6DSO_XL_ODR_3333Hz:
*odr = 3333.0f;
break;
case LSM6DSO_XL_ODR_6667Hz:
*odr = 6667.0f;
break;
default:
ret = 1;
break;
}
return ret;
}
/**
* @brief Set the LSM6DSO accelerometer sensor output data rate
* @param odr the output data rate value to be set
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_x_odr(float odr)
{
/* Check if the component is enabled */
if (_x_is_enabled == 1U) {
return set_x_odr_when_enabled(odr);
} else {
return set_x_odr_when_disabled(odr);
}
}
/**
* @brief Set the LSM6DSO accelerometer sensor output data rate when enabled
* @param odr the functional output data rate to be set
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_x_odr_when_enabled(float odr)
{
lsm6dso_odr_xl_t new_odr;
new_odr = (odr <= 12.5f) ? LSM6DSO_XL_ODR_12Hz5
: (odr <= 26.0f) ? LSM6DSO_XL_ODR_26Hz
: (odr <= 52.0f) ? LSM6DSO_XL_ODR_52Hz
: (odr <= 104.0f) ? LSM6DSO_XL_ODR_104Hz
: (odr <= 208.0f) ? LSM6DSO_XL_ODR_208Hz
: (odr <= 417.0f) ? LSM6DSO_XL_ODR_417Hz
: (odr <= 833.0f) ? LSM6DSO_XL_ODR_833Hz
: (odr <= 1667.0f) ? LSM6DSO_XL_ODR_1667Hz
: (odr <= 3333.0f) ? LSM6DSO_XL_ODR_3333Hz
: LSM6DSO_XL_ODR_6667Hz;
/* Output data rate selection. */
if (lsm6dso_xl_data_rate_set(&_reg_ctx, new_odr) != 0) {
return 1;
}
return 0;
}
/**
* @brief Set the LSM6DSO accelerometer sensor output data rate when disabled
* @param odr the functional output data rate to be set
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_x_odr_when_disabled(float odr)
{
_x_last_odr = (odr <= 12.5f) ? LSM6DSO_XL_ODR_12Hz5
: (odr <= 26.0f) ? LSM6DSO_XL_ODR_26Hz
: (odr <= 52.0f) ? LSM6DSO_XL_ODR_52Hz
: (odr <= 104.0f) ? LSM6DSO_XL_ODR_104Hz
: (odr <= 208.0f) ? LSM6DSO_XL_ODR_208Hz
: (odr <= 417.0f) ? LSM6DSO_XL_ODR_417Hz
: (odr <= 833.0f) ? LSM6DSO_XL_ODR_833Hz
: (odr <= 1667.0f) ? LSM6DSO_XL_ODR_1667Hz
: (odr <= 3333.0f) ? LSM6DSO_XL_ODR_3333Hz
: LSM6DSO_XL_ODR_6667Hz;
return 0;
}
/**
* @brief Get the LSM6DSO accelerometer sensor full scale
* @param full_scale pointer where the full scale is written
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_x_fs(float *full_scale)
{
int ret = 0;
lsm6dso_fs_xl_t fs_low_level;
/* Read actual full scale selection from sensor. */
if (lsm6dso_xl_full_scale_get(&_reg_ctx, &fs_low_level) != 0) {
return 1;
}
switch (fs_low_level) {
case LSM6DSO_2g:
*full_scale = 2.0f;
break;
case LSM6DSO_4g:
*full_scale = 4.0f;
break;
case LSM6DSO_8g:
*full_scale = 8.0f;
break;
case LSM6DSO_16g:
*full_scale = 16.0f;
break;
default:
ret = 1;
break;
}
return ret;
}
/**
* @brief Set the LSM6DSO accelerometer sensor full scale
* @param full_scale the functional full scale to be set
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_x_fs(float full_scale)
{
lsm6dso_fs_xl_t new_fs;
/* Seems like MISRA C-2012 rule 14.3a violation but only from single file statical analysis point of view because
the parameter passed to the function is not known at the moment of analysis */
new_fs = (full_scale <= 2.0f) ? LSM6DSO_2g
: (full_scale <= 4.0f) ? LSM6DSO_4g
: (full_scale <= 8.0f) ? LSM6DSO_8g
: LSM6DSO_16g;
if (lsm6dso_xl_full_scale_set(&_reg_ctx, new_fs) != 0) {
return 1;
}
return 0;
}
/**
* @brief Get the LSM6DSO accelerometer sensor power mode
* @param xl_hm_mode the pointer where the high-performance mode is written, xl_ulp_en the pointer where the ultra-low-power enable is written
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_x_power_mode(uint8_t *xl_hm_mode, uint8_t *xl_ulp_en)
{
int ret = 0;
lsm6dso_xl_hm_mode_t power_mode_low_level;
/* Read actual power mode from sensor. */
if (lsm6dso_xl_power_mode_get(&_reg_ctx, &power_mode_low_level) != 0) {
return 1;
}
switch (power_mode_low_level) {
case LSM6DSO_HIGH_PERFORMANCE_MD:
*xl_hm_mode = 0;
*xl_ulp_en = 0;
break;
case LSM6DSO_LOW_NORMAL_POWER_MD:
*xl_hm_mode = 1;
*xl_ulp_en = 0;
break;
case LSM6DSO_ULTRA_LOW_POWER_MD:
*xl_hm_mode = 0;
*xl_ulp_en = 1;
break;
default:
ret = 1;
break;
}
return ret;
}
/**
* @brief Set the LSM6DSO accelerometer sensor power mode
* @param xl_hm_mode the high-performance mode to be set, xl_ulp_en the ultra-low-power enable to be set
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_x_power_mode(uint8_t xl_hm_mode, uint8_t xl_ulp_en)
{
uint8_t power_mode = xl_hm_mode + (xl_ulp_en << 1);
lsm6dso_xl_hm_mode_t new_power_mode;
new_power_mode = (power_mode == 0) ? LSM6DSO_HIGH_PERFORMANCE_MD
: (power_mode == 1) ? LSM6DSO_LOW_NORMAL_POWER_MD
: LSM6DSO_ULTRA_LOW_POWER_MD;
if (lsm6dso_xl_power_mode_set(&_reg_ctx, new_power_mode) != 0) {
return 1;
}
return 0;
}
/**
* @brief Get the LSM6DSO accelerometer sensor high-resolution selection
* @param lpf2_en the pointer where the high-resolution selection is written
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_x_lpf2_en(uint8_t *lpf2_en)
{
/* Read actual high-resolution selection from sensor. */
if (lsm6dso_xl_filter_lp2_get(&_reg_ctx, lpf2_en) != 0) {
return 1;
}
return 0;
}
/**
* @brief Set the LSM6DSO accelerometer sensor high-resolution selection
* @param lpf2_en the high-resolution selection to be set
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_x_lpf2_en(uint8_t lpf2_en)
{
if (lsm6dso_xl_filter_lp2_set(&_reg_ctx, lpf2_en) != 0) {
return 1;
}
return 0;
}
/**
* @brief Get the LSM6DSO accelerometer sensor filter configuration
* @param hp_slope_xl_en the pointer where the filter selection is written, hpcf_xl the pointer where the filter configuration is written
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_x_filter_config(uint8_t *hp_slope_xl_en, uint8_t *hpcf_xl)
{
int ret = 0;
lsm6dso_hp_slope_xl_en_t filter_low_level;
/* Read actual filter configuration from sensor. */
if (lsm6dso_xl_hp_path_on_out_get(&_reg_ctx, &filter_low_level) != 0) {
return 1;
}
switch (filter_low_level) {
case LSM6DSO_HP_PATH_DISABLE_ON_OUT:
*hp_slope_xl_en = 0;
*hpcf_xl = 0;
break;
case LSM6DSO_LP_ODR_DIV_10:
*hp_slope_xl_en = 0;
*hpcf_xl = 1;
break;
case LSM6DSO_LP_ODR_DIV_20:
*hp_slope_xl_en = 0;
*hpcf_xl = 2;
break;
case LSM6DSO_LP_ODR_DIV_45:
*hp_slope_xl_en = 0;
*hpcf_xl = 3;
break;
case LSM6DSO_LP_ODR_DIV_100:
*hp_slope_xl_en = 0;
*hpcf_xl = 4;
break;
case LSM6DSO_LP_ODR_DIV_200:
*hp_slope_xl_en = 0;
*hpcf_xl = 5;
break;
case LSM6DSO_LP_ODR_DIV_400:
*hp_slope_xl_en = 0;
*hpcf_xl = 6;
break;
case LSM6DSO_LP_ODR_DIV_800:
*hp_slope_xl_en = 0;
*hpcf_xl = 7;
break;
case LSM6DSO_SLOPE_ODR_DIV_4:
*hp_slope_xl_en = 1;
*hpcf_xl = 0;
break;
case LSM6DSO_HP_ODR_DIV_10:
*hp_slope_xl_en = 1;
*hpcf_xl = 1;
break;
case LSM6DSO_HP_ODR_DIV_20:
*hp_slope_xl_en = 1;
*hpcf_xl = 2;
break;
case LSM6DSO_HP_ODR_DIV_45:
*hp_slope_xl_en = 1;
*hpcf_xl = 3;
break;
case LSM6DSO_HP_ODR_DIV_100:
*hp_slope_xl_en = 1;
*hpcf_xl = 4;
break;
case LSM6DSO_HP_ODR_DIV_200:
*hp_slope_xl_en = 1;
*hpcf_xl = 5;
break;
case LSM6DSO_HP_ODR_DIV_400:
*hp_slope_xl_en = 1;
*hpcf_xl = 6;
break;
case LSM6DSO_HP_ODR_DIV_800:
*hp_slope_xl_en = 1;
*hpcf_xl = 7;
break;
default:
ret = 1;
break;
}
return ret;
}
/**
* @brief Set the LSM6DSO accelerometer sensor filter configuration
* @param hp_slope_xl_en the filter selection to be set, hpcf_xl the filter configuration to be set
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_x_filter_config(uint8_t hp_slope_xl_en, uint8_t hpcf_xl)
{
uint8_t filter = hpcf_xl + (hp_slope_xl_en << 4);
lsm6dso_hp_slope_xl_en_t new_filter;
new_filter = (filter == 0x00) ? LSM6DSO_HP_PATH_DISABLE_ON_OUT
: (filter == 0x01) ? LSM6DSO_LP_ODR_DIV_10
: (filter == 0x02) ? LSM6DSO_LP_ODR_DIV_20
: (filter == 0x03) ? LSM6DSO_LP_ODR_DIV_45
: (filter == 0x04) ? LSM6DSO_LP_ODR_DIV_100
: (filter == 0x05) ? LSM6DSO_LP_ODR_DIV_200
: (filter == 0x06) ? LSM6DSO_LP_ODR_DIV_400
: (filter == 0x07) ? LSM6DSO_LP_ODR_DIV_800
: (filter == 0x10) ? LSM6DSO_SLOPE_ODR_DIV_4
: (filter == 0x11) ? LSM6DSO_HP_ODR_DIV_10
: (filter == 0x12) ? LSM6DSO_HP_ODR_DIV_20
: (filter == 0x13) ? LSM6DSO_HP_ODR_DIV_45
: (filter == 0x14) ? LSM6DSO_HP_ODR_DIV_100
: (filter == 0x15) ? LSM6DSO_HP_ODR_DIV_200
: (filter == 0x16) ? LSM6DSO_HP_ODR_DIV_400
: (filter == 0x17) ? LSM6DSO_HP_ODR_DIV_800
: LSM6DSO_HP_PATH_DISABLE_ON_OUT;
if (lsm6dso_xl_hp_path_on_out_set(&_reg_ctx, new_filter) != 0) {
return 1;
}
return 0;
}
/**
* @brief Get the LSM6DSO gyroscope sensor power mode
* @param g_hm_mode the pointer where the high-performance mode is written
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_g_power_mode(uint8_t *g_hm_mode)
{
int ret = 0;
lsm6dso_g_hm_mode_t power_mode_low_level;
/* Read actual power mode from sensor. */
if (lsm6dso_gy_power_mode_get(&_reg_ctx, &power_mode_low_level) != 0) {
return 1;
}
switch (power_mode_low_level) {
case LSM6DSO_GY_HIGH_PERFORMANCE:
*g_hm_mode = 0;
break;
case LSM6DSO_GY_NORMAL:
*g_hm_mode = 1;
break;
default:
ret = 1;
break;
}
return ret;
}
/**
* @brief Set the LSM6DSO gyroscope sensor power mode
* @param g_hm_mode the high-performance mode to be set
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_g_power_mode(uint8_t g_hm_mode)
{
lsm6dso_g_hm_mode_t new_power_mode;
new_power_mode = (g_hm_mode == 0) ? LSM6DSO_GY_HIGH_PERFORMANCE
: LSM6DSO_GY_NORMAL;
if (lsm6dso_gy_power_mode_set(&_reg_ctx, new_power_mode) != 0) {
return 1;
}
return 0;
}
/**
* @brief Get the LSM6DSO gyroscope sensor low-pass filter configuration
* @param lpf1_sel_g the pointer where the lpf enable is written, ftype the pointer where the filter configuration is written
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_g_lpf_config(uint8_t *lpf1_sel_g, uint8_t *ftype)
{
int ret = 0;
lsm6dso_ftype_t ftype_low_level;
/* Read actual lpf enable from sensor. */
if (lsm6dso_gy_filter_lp1_get(&_reg_ctx, lpf1_sel_g) != 0) {
return 1;
}
/* Read actual filter configuration from sensor. */
if (lsm6dso_gy_lp1_bandwidth_get(&_reg_ctx, &ftype_low_level) != 0) {
return 1;
}
switch (ftype_low_level) {
case LSM6DSO_ULTRA_LIGHT:
*ftype = 0;
break;
case LSM6DSO_VERY_LIGHT:
*ftype = 1;
break;
case LSM6DSO_LIGHT:
*ftype = 2;
break;
case LSM6DSO_MEDIUM:
*ftype = 3;
break;
case LSM6DSO_STRONG:
*ftype = 4;
break;
case LSM6DSO_VERY_STRONG:
*ftype = 5;
break;
case LSM6DSO_AGGRESSIVE:
*ftype = 6;
break;
case LSM6DSO_XTREME:
*ftype = 7;
break;
default:
ret = 1;
break;
}
return ret;
}
/**
* @brief Set the LSM6DSO gyroscope sensor low-pass filter configuration
* @param lpf1_sel_g the lpf enable to be set, ftype the filter configuration to be set
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_g_lpf_config(uint8_t lpf1_sel_g, uint8_t ftype)
{
lsm6dso_ftype_t new_ftype;
new_ftype = (ftype == 0) ? LSM6DSO_ULTRA_LIGHT
: (ftype == 1) ? LSM6DSO_VERY_LIGHT
: (ftype == 2) ? LSM6DSO_LIGHT
: (ftype == 3) ? LSM6DSO_MEDIUM
: (ftype == 4) ? LSM6DSO_STRONG
: (ftype == 5) ? LSM6DSO_VERY_STRONG
: (ftype == 6) ? LSM6DSO_AGGRESSIVE
: LSM6DSO_XTREME;
if (lsm6dso_gy_filter_lp1_set(&_reg_ctx, lpf1_sel_g) != 0) {
return 1;
}
if (lsm6dso_gy_lp1_bandwidth_set(&_reg_ctx, new_ftype) != 0) {
return 1;
}
return 0;
}
/**
* @brief Get the LSM6DSO gyroscope sensor high-pass filter configuration
* @param hp_en_g the pointer where the hpf enable is written, hpm_g the pointer where the cutoff selection is written
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_g_hpf_config(uint8_t *hp_en_g, uint8_t *hpm_g)
{
int ret = 0;
lsm6dso_hpm_g_t hpm_g_low_level;
/* Read actual filter configuration from sensor. */
if (lsm6dso_gy_hp_path_internal_get(&_reg_ctx, &hpm_g_low_level) != 0) {
return 1;
}
switch (hpm_g_low_level) {
case LSM6DSO_HP_FILTER_NONE:
*hp_en_g = 0;
*hpm_g = 0;
break;
case LSM6DSO_HP_FILTER_16mHz:
*hp_en_g = 1;
*hpm_g = 0;
break;
case LSM6DSO_HP_FILTER_65mHz:
*hp_en_g = 1;
*hpm_g = 1;
break;
case LSM6DSO_HP_FILTER_260mHz:
*hp_en_g = 1;
*hpm_g = 2;
break;
case LSM6DSO_HP_FILTER_1Hz04:
*hp_en_g = 1;
*hpm_g = 3;
break;
default:
ret = 1;
break;
}
return ret;
}
/**
* @brief Set the LSM6DSO gyroscope sensor high-pass filter configuration
* @param hp_en_g the hpf enable to be set, hpm_g the cutoff selection to be set
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_g_hpf_config(uint8_t hp_en_g, uint8_t hpm_g)
{
uint8_t hpf_config = hpm_g + (hp_en_g << 7);
lsm6dso_hpm_g_t new_hpm_g;
new_hpm_g = (hpf_config == 0x00) ? LSM6DSO_HP_FILTER_NONE
: (hpf_config == 0x80) ? LSM6DSO_HP_FILTER_16mHz
: (hpf_config == 0x81) ? LSM6DSO_HP_FILTER_65mHz
: (hpf_config == 0x82) ? LSM6DSO_HP_FILTER_260mHz
: (hpf_config == 0x83) ? LSM6DSO_HP_FILTER_1Hz04
: LSM6DSO_HP_FILTER_NONE;
if (lsm6dso_gy_hp_path_internal_set(&_reg_ctx, new_hpm_g) != 0) {
return 1;
}
return 0;
}
/**
* @brief Get the LSM6DSO accelerometer sensor raw axes
* @param value pointer where the raw values of the axes are written
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_x_axes_raw(int16_t *value)
{
axis3bit16_t data_raw;
/* Read raw data values. */
if (lsm6dso_acceleration_raw_get(&_reg_ctx, data_raw.u8bit) != 0) {
return 1;
}
/* Format the data. */
value[0] = data_raw.i16bit[0];
value[1] = data_raw.i16bit[1];
value[2] = data_raw.i16bit[2];
return 0;
}
/**
* @brief Get the LSM6DSO accelerometer sensor axes
* @param acceleration pointer where the values of the axes are written
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_x_axes(int32_t *acceleration)
{
axis3bit16_t data_raw;
float sensitivity = 0.0f;
/* Read raw data values. */
if (lsm6dso_acceleration_raw_get(&_reg_ctx, data_raw.u8bit) != 0) {
return 1;
}
/* Get LSM6DSO actual sensitivity. */
if (get_x_sensitivity(&sensitivity) != 0) {
return 1;
}
/* Calculate the data. */
acceleration[0] = (int32_t)((float)((float)data_raw.i16bit[0] * sensitivity));
acceleration[1] = (int32_t)((float)((float)data_raw.i16bit[1] * sensitivity));
acceleration[2] = (int32_t)((float)((float)data_raw.i16bit[2] * sensitivity));
return 0;
}
/**
* @brief Enable the LSM6DSO gyroscope sensor
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::enable_g()
{
/* Check if the component is already enabled */
if (_g_is_enabled == 1U) {
return 0;
}
/* Output data rate selection. */
if (lsm6dso_gy_data_rate_set(&_reg_ctx, _g_last_odr) != 0) {
return 1;
}
_g_is_enabled = 1;
return 0;
}
/**
* @brief Disable the LSM6DSO gyroscope sensor
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::disable_g()
{
/* Check if the component is already disabled */
if (_g_is_enabled == 0U) {
return 0;
}
/* Get current output data rate. */
if (lsm6dso_gy_data_rate_get(&_reg_ctx, &_g_last_odr) != 0) {
return 1;
}
/* Output data rate selection - power down. */
if (lsm6dso_gy_data_rate_set(&_reg_ctx, LSM6DSO_GY_ODR_OFF) != 0) {
return 1;
}
_g_is_enabled = 0;
return 0;
}
/**
* @brief Get the LSM6DSO gyroscope sensor sensitivity
* @param sensitivity pointer where the sensitivity is written
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_g_sensitivity(float *sensitivity)
{
int ret = 0;
lsm6dso_fs_g_t full_scale;
/* Read actual full scale selection from sensor. */
if (lsm6dso_gy_full_scale_get(&_reg_ctx, &full_scale) != 0) {
return 1;
}
/* Store the sensitivity based on actual full scale. */
switch (full_scale) {
case LSM6DSO_125dps:
*sensitivity = LSM6DSO_GYRO_SENSITIVITY_FS_125DPS;
break;
case LSM6DSO_250dps:
*sensitivity = LSM6DSO_GYRO_SENSITIVITY_FS_250DPS;
break;
case LSM6DSO_500dps:
*sensitivity = LSM6DSO_GYRO_SENSITIVITY_FS_500DPS;
break;
case LSM6DSO_1000dps:
*sensitivity = LSM6DSO_GYRO_SENSITIVITY_FS_1000DPS;
break;
case LSM6DSO_2000dps:
*sensitivity = LSM6DSO_GYRO_SENSITIVITY_FS_2000DPS;
break;
default:
ret = 1;
break;
}
return ret;
}
/**
* @brief Get the LSM6DSO gyroscope sensor output data rate
* @param odr pointer where the output data rate is written
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_g_odr(float *odr)
{
int ret = 0;
lsm6dso_odr_g_t odr_low_level;
/* Get current output data rate. */
if (lsm6dso_gy_data_rate_get(&_reg_ctx, &odr_low_level) != 0) {
return 1;
}
switch (odr_low_level) {
case LSM6DSO_GY_ODR_OFF:
*odr = 0.0f;
break;
case LSM6DSO_GY_ODR_12Hz5:
*odr = 12.5f;
break;
case LSM6DSO_GY_ODR_26Hz:
*odr = 26.0f;
break;
case LSM6DSO_GY_ODR_52Hz:
*odr = 52.0f;
break;
case LSM6DSO_GY_ODR_104Hz:
*odr = 104.0f;
break;
case LSM6DSO_GY_ODR_208Hz:
*odr = 208.0f;
break;
case LSM6DSO_GY_ODR_417Hz:
*odr = 417.0f;
break;
case LSM6DSO_GY_ODR_833Hz:
*odr = 833.0f;
break;
case LSM6DSO_GY_ODR_1667Hz:
*odr = 1667.0f;
break;
case LSM6DSO_GY_ODR_3333Hz:
*odr = 3333.0f;
break;
case LSM6DSO_GY_ODR_6667Hz:
*odr = 6667.0f;
break;
default:
ret = 1;
break;
}
return ret;
}
/**
* @brief Set the LSM6DSO gyroscope sensor output data rate
* @param odr the output data rate value to be set
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_g_odr(float odr)
{
/* Check if the component is enabled */
if (_g_is_enabled == 1U) {
return set_g_odr_when_enabled(odr);
} else {
return set_g_odr_when_disabled(odr);
}
}
/**
* @brief Set the LSM6DSO gyroscope sensor output data rate when enabled
* @param odr the functional output data rate to be set
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_g_odr_when_enabled(float odr)
{
lsm6dso_odr_g_t new_odr;
new_odr = (odr <= 12.5f) ? LSM6DSO_GY_ODR_12Hz5
: (odr <= 26.0f) ? LSM6DSO_GY_ODR_26Hz
: (odr <= 52.0f) ? LSM6DSO_GY_ODR_52Hz
: (odr <= 104.0f) ? LSM6DSO_GY_ODR_104Hz
: (odr <= 208.0f) ? LSM6DSO_GY_ODR_208Hz
: (odr <= 417.0f) ? LSM6DSO_GY_ODR_417Hz
: (odr <= 833.0f) ? LSM6DSO_GY_ODR_833Hz
: (odr <= 1667.0f) ? LSM6DSO_GY_ODR_1667Hz
: (odr <= 3333.0f) ? LSM6DSO_GY_ODR_3333Hz
: LSM6DSO_GY_ODR_6667Hz;
/* Output data rate selection. */
if (lsm6dso_gy_data_rate_set(&_reg_ctx, new_odr) != 0) {
return 1;
}
return 0;
}
/**
* @brief Set the LSM6DSO gyroscope sensor output data rate when disabled
* @param odr the functional output data rate to be set
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_g_odr_when_disabled(float odr)
{
_g_last_odr = (odr <= 12.5f) ? LSM6DSO_GY_ODR_12Hz5
: (odr <= 26.0f) ? LSM6DSO_GY_ODR_26Hz
: (odr <= 52.0f) ? LSM6DSO_GY_ODR_52Hz
: (odr <= 104.0f) ? LSM6DSO_GY_ODR_104Hz
: (odr <= 208.0f) ? LSM6DSO_GY_ODR_208Hz
: (odr <= 417.0f) ? LSM6DSO_GY_ODR_417Hz
: (odr <= 833.0f) ? LSM6DSO_GY_ODR_833Hz
: (odr <= 1667.0f) ? LSM6DSO_GY_ODR_1667Hz
: (odr <= 3333.0f) ? LSM6DSO_GY_ODR_3333Hz
: LSM6DSO_GY_ODR_6667Hz;
return 0;
}
/**
* @brief Get the LSM6DSO gyroscope sensor full scale
* @param full_scale pointer where the full scale is written
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_g_fs(float *full_scale)
{
int ret = 0;
lsm6dso_fs_g_t fs_low_level;
/* Read actual full scale selection from sensor. */
if (lsm6dso_gy_full_scale_get(&_reg_ctx, &fs_low_level) != 0) {
return 1;
}
switch (fs_low_level) {
case LSM6DSO_125dps:
*full_scale = 125.0f;
break;
case LSM6DSO_250dps:
*full_scale = 250.0f;
break;
case LSM6DSO_500dps:
*full_scale = 500.0f;
break;
case LSM6DSO_1000dps:
*full_scale = 1000.0f;
break;
case LSM6DSO_2000dps:
*full_scale = 2000.0f;
break;
default:
ret = 1;
break;
}
return ret;
}
/**
* @brief Set the LSM6DSO gyroscope sensor full scale
* @param full_scale the functional full scale to be set
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_g_fs(float full_scale)
{
lsm6dso_fs_g_t new_fs;
new_fs = (full_scale <= 125.0f) ? LSM6DSO_125dps
: (full_scale <= 250.0f) ? LSM6DSO_250dps
: (full_scale <= 500.0f) ? LSM6DSO_500dps
: (full_scale <= 1000.0f) ? LSM6DSO_1000dps
: LSM6DSO_2000dps;
if (lsm6dso_gy_full_scale_set(&_reg_ctx, new_fs) != 0) {
return 1;
}
return 0;
}
/**
* @brief Get the LSM6DSO gyroscope sensor raw axes
* @param value pointer where the raw values of the axes are written
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_g_axes_raw(int16_t *value)
{
axis3bit16_t data_raw;
/* Read raw data values. */
if (lsm6dso_angular_rate_raw_get(&_reg_ctx, data_raw.u8bit) != 0) {
return 1;
}
/* Format the data. */
value[0] = data_raw.i16bit[0];
value[1] = data_raw.i16bit[1];
value[2] = data_raw.i16bit[2];
return 0;
}
/**
* @brief Get the LSM6DSO gyroscope sensor axes
* @param angular_rate pointer where the values of the axes are written
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_g_axes(int32_t *angular_rate)
{
axis3bit16_t data_raw;
float sensitivity;
/* Read raw data values. */
if (lsm6dso_angular_rate_raw_get(&_reg_ctx, data_raw.u8bit) != 0) {
return 1;
}
/* Get LSM6DSO actual sensitivity. */
if (get_g_sensitivity(&sensitivity) != 0) {
return 1;
}
/* Calculate the data. */
angular_rate[0] = (int32_t)((float)((float)data_raw.i16bit[0] * sensitivity));
angular_rate[1] = (int32_t)((float)((float)data_raw.i16bit[1] * sensitivity));
angular_rate[2] = (int32_t)((float)((float)data_raw.i16bit[2] * sensitivity));
return 0;
}
/**
* @brief Get the LSM6DSO register value
* @param reg address to be read
* @param data pointer where the value is written
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::read_reg(uint8_t reg, uint8_t *data)
{
if (lsm6dso_read_reg(&_reg_ctx, reg, data, 1) != 0) {
return 1;
}
return 0;
}
/**
* @brief Set the LSM6DSO register value
* @param reg address to be written
* @param data value to be written
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::write_reg(uint8_t reg, uint8_t data)
{
if (lsm6dso_write_reg(&_reg_ctx, reg, &data, 1) != 0) {
return 1;
}
return 0;
}
/**
* @brief Set the interrupt latch
* @param status value to be written
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_interrupt_latch(uint8_t status)
{
if (status > 1U) {
return 1;
}
if (lsm6dso_int_notification_set(&_reg_ctx, (lsm6dso_lir_t)status) != 0) {
return 1;
}
return 0;
}
/**
* @brief Enable free fall detection
* @param int_pin interrupt pin line to be used
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::enable_free_fall_detection(LSM6DSO_Interrupt_Pin_t int_pin)
{
int ret = 0;
lsm6dso_pin_int1_route_t val1;
lsm6dso_pin_int2_route_t val2;
/* Output Data Rate selection */
if (set_x_odr(416.0f) != 0) {
return 1;
}
/* Full scale selection */
if (set_x_fs(2.0f) != 0) {
return 1;
}
/* FF_DUR setting */
if (lsm6dso_ff_dur_set(&_reg_ctx, 0x06) != 0) {
return 1;
}
/* WAKE_DUR setting */
if (lsm6dso_wkup_dur_set(&_reg_ctx, 0x00) != 0) {
return 1;
}
/* SLEEP_DUR setting */
if (lsm6dso_act_sleep_dur_set(&_reg_ctx, 0x00) != 0) {
return 1;
}
/* FF_THS setting */
if (lsm6dso_ff_threshold_set(&_reg_ctx, LSM6DSO_FF_TSH_312mg) != 0) {
return 1;
}
/* Enable free fall event on either INT1 or INT2 pin */
switch (int_pin) {
case LSM6DSO_INT1_PIN:
if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) {
return 1;
}
val1.md1_cfg.int1_ff = PROPERTY_ENABLE;
if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) {
return 1;
}
break;
case LSM6DSO_INT2_PIN:
if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) {
return 1;
}
val2.md2_cfg.int2_ff = PROPERTY_ENABLE;
if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) {
return 1;
}
break;
default:
ret = 1;
break;
}
return ret;
}
/**
* @brief Disable free fall detection
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::disable_free_fall_detection()
{
lsm6dso_pin_int1_route_t val1;
lsm6dso_pin_int2_route_t val2;
/* Disable free fall event on both INT1 and INT2 pins */
if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) {
return 1;
}
val1.md1_cfg.int1_ff = PROPERTY_DISABLE;
if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) {
return 1;
}
if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) {
return 1;
}
val2.md2_cfg.int2_ff = PROPERTY_DISABLE;
if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) {
return 1;
}
/* FF_DUR setting */
if (lsm6dso_ff_dur_set(&_reg_ctx, 0x00) != 0) {
return 1;
}
/* FF_THS setting */
if (lsm6dso_ff_threshold_set(&_reg_ctx, LSM6DSO_FF_TSH_156mg) != 0) {
return 1;
}
return 0;
}
/**
* @brief Set free fall threshold
* @param thr free fall detection threshold
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_free_fall_threshold(uint8_t thr)
{
if (lsm6dso_ff_threshold_set(&_reg_ctx, (lsm6dso_ff_ths_t)thr) != 0) {
return 1;
}
return 0;
}
/**
* @brief Set free fall duration
* @param dur free fall detection duration
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_free_fall_duration(uint8_t dur)
{
if (lsm6dso_ff_dur_set(&_reg_ctx, dur) != 0) {
return 1;
}
return 0;
}
/**
* @brief Enable pedometer
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::enable_pedometer()
{
lsm6dso_pin_int1_route_t val;
/* Output Data Rate selection */
if (set_x_odr(26.0f) != 0) {
return 1;
}
/* Full scale selection */
if (set_x_fs(2.0f) != 0) {
return 1;
}
/* Enable pedometer algorithm. */
if (lsm6dso_pedo_sens_set(&_reg_ctx, LSM6DSO_PEDO_BASE_MODE) != 0) {
return 1;
}
/* Enable step detector on INT1 pin */
if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val) != 0) {
return 1;
}
val.emb_func_int1.int1_step_detector = PROPERTY_ENABLE;
if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val) != 0) {
return 1;
}
return 0;
}
/**
* @brief Disable pedometer
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::disable_pedometer()
{
lsm6dso_pin_int1_route_t val1;
/* Disable step detector on INT1 pin */
if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) {
return 1;
}
val1.emb_func_int1.int1_step_detector = PROPERTY_DISABLE;
if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) {
return 1;
}
/* Disable pedometer algorithm. */
if (lsm6dso_pedo_sens_set(&_reg_ctx, LSM6DSO_PEDO_DISABLE) != 0) {
return 1;
}
return 0;
}
/**
* @brief Get step count
* @param step_count step counter
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_step_counter(uint16_t *step_count)
{
if (lsm6dso_number_of_steps_get(&_reg_ctx, (uint8_t *)step_count) != 0) {
return 1;
}
return 0;
}
/**
* @brief Enable step counter reset
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::reset_step_counter()
{
if (lsm6dso_steps_reset(&_reg_ctx) != 0) {
return 1;
}
return 0;
}
/**
* @brief Enable tilt detection
* @param int_pin interrupt pin line to be used
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::enable_tilt_detection(LSM6DSO_Interrupt_Pin_t int_pin)
{
int ret = 0;
lsm6dso_pin_int1_route_t val1;
lsm6dso_pin_int2_route_t val2;
/* Output Data Rate selection */
if (set_x_odr(26.0f) != 0) {
return 1;
}
/* Full scale selection */
if (set_x_fs(2.0f) != 0) {
return 1;
}
/* Enable tilt calculation. */
if (lsm6dso_tilt_sens_set(&_reg_ctx, PROPERTY_ENABLE) != 0) {
return 1;
}
/* Enable tilt event on either INT1 or INT2 pin */
switch (int_pin) {
case LSM6DSO_INT1_PIN:
if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) {
return 1;
}
val1.emb_func_int1.int1_tilt = PROPERTY_ENABLE;
if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) {
return 1;
}
break;
case LSM6DSO_INT2_PIN:
if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) {
return 1;
}
val2.emb_func_int2.int2_tilt = PROPERTY_ENABLE;
if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) {
return 1;
}
break;
default:
ret = 1;
break;
}
return ret;
}
/**
* @brief Disable tilt detection
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::disable_tilt_detection()
{
lsm6dso_pin_int1_route_t val1;
lsm6dso_pin_int2_route_t val2;
/* Disable tilt event on both INT1 and INT2 pins */
if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) {
return 1;
}
val1.emb_func_int1.int1_tilt = PROPERTY_DISABLE;
if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) {
return 1;
}
if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) {
return 1;
}
val2.emb_func_int2.int2_tilt = PROPERTY_DISABLE;
if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) {
return 1;
}
/* Disable tilt calculation. */
if (lsm6dso_tilt_sens_set(&_reg_ctx, PROPERTY_DISABLE) != 0) {
return 1;
}
return 0;
}
/**
* @brief Enable wake up detection
* @param int_pin interrupt pin line to be used
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::enable_wake_up_detection(LSM6DSO_Interrupt_Pin_t int_pin)
{
int ret = 0;
lsm6dso_pin_int1_route_t val1;
lsm6dso_pin_int2_route_t val2;
/* Output Data Rate selection */
if (set_x_odr(416.0f) != 0) {
return 1;
}
/* Full scale selection */
if (set_x_fs(2.0f) != 0) {
return 1;
}
/* WAKE_DUR setting */
if (lsm6dso_wkup_dur_set(&_reg_ctx, 0x00) != 0) {
return 1;
}
/* Set wake up threshold. */
if (lsm6dso_wkup_threshold_set(&_reg_ctx, 0x02) != 0) {
return 1;
}
/* Enable wake up event on either INT1 or INT2 pin */
switch (int_pin) {
case LSM6DSO_INT1_PIN:
if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) {
return 1;
}
val1.md1_cfg.int1_wu = PROPERTY_ENABLE;
if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) {
return 1;
}
break;
case LSM6DSO_INT2_PIN:
if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) {
return 1;
}
val2.md2_cfg.int2_wu = PROPERTY_ENABLE;
if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) {
return 1;
}
break;
default:
ret = 1;
break;
}
return ret;
}
/**
* @brief Disable wake up detection
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::disable_wake_up_detection()
{
lsm6dso_pin_int1_route_t val1;
lsm6dso_pin_int2_route_t val2;
/* Disable wake up event on both INT1 and INT2 pins */
if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) {
return 1;
}
val1.md1_cfg.int1_wu = PROPERTY_DISABLE;
if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) {
return 1;
}
if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) {
return 1;
}
val2.md2_cfg.int2_wu = PROPERTY_DISABLE;
if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) {
return 1;
}
/* Reset wake up threshold. */
if (lsm6dso_wkup_threshold_set(&_reg_ctx, 0x00) != 0) {
return 1;
}
/* WAKE_DUR setting */
if (lsm6dso_wkup_dur_set(&_reg_ctx, 0x00) != 0) {
return 1;
}
return 0;
}
/**
* @brief Set wake up threshold
* @param thr wake up detection threshold
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_wake_up_threshold(uint8_t thr)
{
/* Set wake up threshold. */
if (lsm6dso_wkup_threshold_set(&_reg_ctx, thr) != 0) {
return 1;
}
return 0;
}
/**
* @brief Set wake up duration
* @param dur wake up detection duration
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_wake_up_duration(uint8_t dur)
{
/* Set wake up duration. */
if (lsm6dso_wkup_dur_set(&_reg_ctx, dur) != 0) {
return 1;
}
return 0;
}
/**
* @brief Enable single tap detection
* @param int_pin interrupt pin line to be used
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::enable_single_tap_detection(LSM6DSO_Interrupt_Pin_t int_pin)
{
int ret = 0;
lsm6dso_pin_int1_route_t val1;
lsm6dso_pin_int2_route_t val2;
/* Output Data Rate selection */
if (set_x_odr(416.0f) != 0) {
return 1;
}
/* Full scale selection */
if (set_x_fs(2.0f) != 0) {
return 1;
}
/* Enable X direction in tap recognition. */
if (lsm6dso_tap_detection_on_x_set(&_reg_ctx, PROPERTY_ENABLE) != 0) {
return 1;
}
/* Enable Y direction in tap recognition. */
if (lsm6dso_tap_detection_on_y_set(&_reg_ctx, PROPERTY_ENABLE) != 0) {
return 1;
}
/* Enable Z direction in tap recognition. */
if (lsm6dso_tap_detection_on_z_set(&_reg_ctx, PROPERTY_ENABLE) != 0) {
return 1;
}
/* Set tap threshold. */
if (lsm6dso_tap_threshold_x_set(&_reg_ctx, 0x08) != 0) {
return 1;
}
/* Set tap shock time window. */
if (lsm6dso_tap_shock_set(&_reg_ctx, 0x02) != 0) {
return 1;
}
/* Set tap quiet time window. */
if (lsm6dso_tap_quiet_set(&_reg_ctx, 0x01) != 0) {
return 1;
}
/* _NOTE_: Tap duration time window - don't care for single tap. */
/* _NOTE_: Single/Double Tap event - don't care of this flag for single tap. */
/* Enable single tap event on either INT1 or INT2 pin */
switch (int_pin) {
case LSM6DSO_INT1_PIN:
if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) {
return 1;
}
val1.md1_cfg.int1_single_tap = PROPERTY_ENABLE;
if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) {
return 1;
}
break;
case LSM6DSO_INT2_PIN:
if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) {
return 1;
}
val2.md2_cfg.int2_single_tap = PROPERTY_ENABLE;
if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) {
return 1;
}
break;
default:
ret = 1;
break;
}
return ret;
}
/**
* @brief Disable single tap detection
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::disable_single_tap_detection()
{
lsm6dso_pin_int1_route_t val1;
lsm6dso_pin_int2_route_t val2;
/* Disable single tap event on both INT1 and INT2 pins */
if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) {
return 1;
}
val1.md1_cfg.int1_single_tap = PROPERTY_DISABLE;
if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) {
return 1;
}
if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) {
return 1;
}
val2.md2_cfg.int2_single_tap = PROPERTY_DISABLE;
if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) {
return 1;
}
/* Reset tap quiet time window. */
if (lsm6dso_tap_quiet_set(&_reg_ctx, 0x00) != 0) {
return 1;
}
/* Reset tap shock time window. */
if (lsm6dso_tap_shock_set(&_reg_ctx, 0x00) != 0) {
return 1;
}
/* Reset tap threshold. */
if (lsm6dso_tap_threshold_x_set(&_reg_ctx, 0x00) != 0) {
return 1;
}
/* Disable Z direction in tap recognition. */
if (lsm6dso_tap_detection_on_z_set(&_reg_ctx, PROPERTY_DISABLE) != 0) {
return 1;
}
/* Disable Y direction in tap recognition. */
if (lsm6dso_tap_detection_on_y_set(&_reg_ctx, PROPERTY_DISABLE) != 0) {
return 1;
}
/* Disable X direction in tap recognition. */
if (lsm6dso_tap_detection_on_x_set(&_reg_ctx, PROPERTY_DISABLE) != 0) {
return 1;
}
return 0;
}
/**
* @brief Enable double tap detection
* @param int_pin interrupt pin line to be used
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::enable_double_tap_detection(LSM6DSO_Interrupt_Pin_t int_pin)
{
int ret = 0;
lsm6dso_pin_int1_route_t val1;
lsm6dso_pin_int2_route_t val2;
/* Output Data Rate selection */
if (set_x_odr(416.0f) != 0) {
return 1;
}
/* Full scale selection */
if (set_x_fs(2.0f) != 0) {
return 1;
}
/* Enable X direction in tap recognition. */
if (lsm6dso_tap_detection_on_x_set(&_reg_ctx, PROPERTY_ENABLE) != 0) {
return 1;
}
/* Enable Y direction in tap recognition. */
if (lsm6dso_tap_detection_on_y_set(&_reg_ctx, PROPERTY_ENABLE) != 0) {
return 1;
}
/* Enable Z direction in tap recognition. */
if (lsm6dso_tap_detection_on_z_set(&_reg_ctx, PROPERTY_ENABLE) != 0) {
return 1;
}
/* Set tap threshold. */
if (lsm6dso_tap_threshold_x_set(&_reg_ctx, 0x08) != 0) {
return 1;
}
/* Set tap shock time window. */
if (lsm6dso_tap_shock_set(&_reg_ctx, 0x03) != 0) {
return 1;
}
/* Set tap quiet time window. */
if (lsm6dso_tap_quiet_set(&_reg_ctx, 0x03) != 0) {
return 1;
}
/* Set tap duration time window. */
if (lsm6dso_tap_dur_set(&_reg_ctx, 0x08) != 0) {
return 1;
}
/* Single and double tap enabled. */
if (lsm6dso_tap_mode_set(&_reg_ctx, LSM6DSO_BOTH_SINGLE_DOUBLE) != 0) {
return 1;
}
/* Enable double tap event on either INT1 or INT2 pin */
switch (int_pin) {
case LSM6DSO_INT1_PIN:
if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) {
return 1;
}
val1.md1_cfg.int1_double_tap = PROPERTY_ENABLE;
if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) {
return 1;
}
break;
case LSM6DSO_INT2_PIN:
if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) {
return 1;
}
val2.md2_cfg.int2_double_tap = PROPERTY_ENABLE;
if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) {
return 1;
}
break;
default:
ret = 1;
break;
}
return ret;
}
/**
* @brief Disable double tap detection
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::disable_double_tap_detection()
{
lsm6dso_pin_int1_route_t val1;
lsm6dso_pin_int2_route_t val2;
/* Disable double tap event on both INT1 and INT2 pins */
if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) {
return 1;
}
val1.md1_cfg.int1_double_tap = PROPERTY_DISABLE;
if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) {
return 1;
}
if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) {
return 1;
}
val2.md2_cfg.int2_double_tap = PROPERTY_DISABLE;
if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) {
return 1;
}
/* Only single tap enabled. */
if (lsm6dso_tap_mode_set(&_reg_ctx, LSM6DSO_ONLY_SINGLE) != 0) {
return 1;
}
/* Reset tap duration time window. */
if (lsm6dso_tap_dur_set(&_reg_ctx, 0x00) != 0) {
return 1;
}
/* Reset tap quiet time window. */
if (lsm6dso_tap_quiet_set(&_reg_ctx, 0x00) != 0) {
return 1;
}
/* Reset tap shock time window. */
if (lsm6dso_tap_shock_set(&_reg_ctx, 0x00) != 0) {
return 1;
}
/* Reset tap threshold. */
if (lsm6dso_tap_threshold_x_set(&_reg_ctx, 0x00) != 0) {
return 1;
}
/* Disable Z direction in tap recognition. */
if (lsm6dso_tap_detection_on_z_set(&_reg_ctx, PROPERTY_DISABLE) != 0) {
return 1;
}
/* Disable Y direction in tap recognition. */
if (lsm6dso_tap_detection_on_y_set(&_reg_ctx, PROPERTY_DISABLE) != 0) {
return 1;
}
/* Disable X direction in tap recognition. */
if (lsm6dso_tap_detection_on_x_set(&_reg_ctx, PROPERTY_DISABLE) != 0) {
return 1;
}
return 0;
}
/**
* @brief Set tap threshold
* @param thr tap threshold
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_tap_threshold(uint8_t thr)
{
/* Set tap threshold. */
if (lsm6dso_tap_threshold_x_set(&_reg_ctx, thr) != 0) {
return 1;
}
return 0;
}
/**
* @brief Set tap shock time
* @param time tap shock time
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_tap_shock_time(uint8_t time)
{
/* Set tap shock time window. */
if (lsm6dso_tap_shock_set(&_reg_ctx, time) != 0) {
return 1;
}
return 0;
}
/**
* @brief Set tap quiet time
* @param time tap quiet time
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_tap_quiet_time(uint8_t time)
{
/* Set tap quiet time window. */
if (lsm6dso_tap_quiet_set(&_reg_ctx, time) != 0) {
return 1;
}
return 0;
}
/**
* @brief Set tap duration time
* @param time tap duration time
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_tap_duration_time(uint8_t time)
{
/* Set tap duration time window. */
if (lsm6dso_tap_dur_set(&_reg_ctx, time) != 0) {
return 1;
}
return 0;
}
/**
* @brief Enable 6D orientation detection
* @param int_pin interrupt pin line to be used
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::enable_6d_orientation(LSM6DSO_Interrupt_Pin_t int_pin)
{
int ret = 0;
lsm6dso_pin_int1_route_t val1;
lsm6dso_pin_int2_route_t val2;
/* Output Data Rate selection */
if (set_x_odr(416.0f) != 0) {
return 1;
}
/* Full scale selection */
if (set_x_fs(2.0f) != 0) {
return 1;
}
/* 6D orientation enabled. */
if (lsm6dso_6d_threshold_set(&_reg_ctx, LSM6DSO_DEG_60) != 0) {
return 1;
}
/* Enable 6D orientation event on either INT1 or INT2 pin */
switch (int_pin) {
case LSM6DSO_INT1_PIN:
if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) {
return 1;
}
val1.md1_cfg.int1_6d = PROPERTY_ENABLE;
if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) {
return 1;
}
break;
case LSM6DSO_INT2_PIN:
if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) {
return 1;
}
val2.md2_cfg.int2_6d = PROPERTY_ENABLE;
if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) {
return 1;
}
break;
default:
ret = 1;
break;
}
return ret;
}
/**
* @brief Disable 6D orientation detection
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::disable_6d_orientation()
{
lsm6dso_pin_int1_route_t val1;
lsm6dso_pin_int2_route_t val2;
/* Disable 6D orientation event on both INT1 and INT2 pins */
if (lsm6dso_pin_int1_route_get(&_reg_ctx, &val1) != 0) {
return 1;
}
val1.md1_cfg.int1_6d = PROPERTY_DISABLE;
if (lsm6dso_pin_int1_route_set(&_reg_ctx, &val1) != 0) {
return 1;
}
if (lsm6dso_pin_int2_route_get(&_reg_ctx, &val2) != 0) {
return 1;
}
val2.md2_cfg.int2_6d = PROPERTY_DISABLE;
if (lsm6dso_pin_int2_route_set(&_reg_ctx, &val2) != 0) {
return 1;
}
/* Reset 6D orientation. */
if (lsm6dso_6d_threshold_set(&_reg_ctx, LSM6DSO_DEG_80) != 0) {
return 1;
}
return 0;
}
/**
* @brief Set 6D orientation threshold
* @param thr 6D Orientation detection threshold
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_6d_orientation_threshold(uint8_t thr)
{
if (lsm6dso_6d_threshold_set(&_reg_ctx, (lsm6dso_sixd_ths_t)thr) != 0) {
return 1;
}
return 0;
}
/**
* @brief Get the status of XLow orientation
* @param xl the status of XLow orientation
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_6d_orientation_xl(uint8_t *xl)
{
lsm6dso_d6d_src_t data;
if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_D6D_SRC, (uint8_t *)&data, 1) != 0) {
return 1;
}
*xl = data.xl;
return 0;
}
/**
* @brief Get the status of XHigh orientation
* @param xh the status of XHigh orientation
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_6d_orientation_xh(uint8_t *xh)
{
lsm6dso_d6d_src_t data;
if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_D6D_SRC, (uint8_t *)&data, 1) != 0) {
return 1;
}
*xh = data.xh;
return 0;
}
/**
* @brief Get the status of YLow orientation
* @param yl the status of YLow orientation
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_6d_orientation_yl(uint8_t *yl)
{
lsm6dso_d6d_src_t data;
if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_D6D_SRC, (uint8_t *)&data, 1) != 0) {
return 1;
}
*yl = data.yl;
return 0;
}
/**
* @brief Get the status of YHigh orientation
* @param yh the status of YHigh orientation
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_6d_orientation_yh(uint8_t *yh)
{
lsm6dso_d6d_src_t data;
if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_D6D_SRC, (uint8_t *)&data, 1) != 0) {
return 1;
}
*yh = data.yh;
return 0;
}
/**
* @brief Get the status of ZLow orientation
* @param zl the status of ZLow orientation
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_6d_orientation_zl(uint8_t *zl)
{
lsm6dso_d6d_src_t data;
if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_D6D_SRC, (uint8_t *)&data, 1) != 0) {
return 1;
}
*zl = data.zl;
return 0;
}
/**
* @brief Get the status of ZHigh orientation
* @param zh the status of ZHigh orientation
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_6d_orientation_zh(uint8_t *zh)
{
lsm6dso_d6d_src_t data;
if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_D6D_SRC, (uint8_t *)&data, 1) != 0) {
return 1;
}
*zh = data.zh;
return 0;
}
/**
* @brief Get the LSM6DSO ACC data ready bit value
* @param status the status of data ready bit
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_x_drdy_status(uint8_t *status)
{
if (lsm6dso_xl_flag_data_ready_get(&_reg_ctx, status) != 0) {
return 1;
}
return 0;
}
/**
* @brief Get the status of all hardware events
* @param status the status of all hardware events
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_event_status(LSM6DSO_Event_Status_t *status)
{
uint8_t tilt_ia = 0U;
lsm6dso_wake_up_src_t wake_up_src;
lsm6dso_tap_src_t tap_src;
lsm6dso_d6d_src_t d6d_src;
lsm6dso_emb_func_src_t func_src;
lsm6dso_md1_cfg_t md1_cfg;
lsm6dso_md2_cfg_t md2_cfg;
lsm6dso_emb_func_int1_t int1_ctrl;
lsm6dso_emb_func_int2_t int2_ctrl;
(void)memset((void *)status, 0x0, sizeof(LSM6DSO_Event_Status_t));
if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_WAKE_UP_SRC, (uint8_t *)&wake_up_src, 1) != 0) {
return 1;
}
if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_TAP_SRC, (uint8_t *)&tap_src, 1) != 0) {
return 1;
}
if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_D6D_SRC, (uint8_t *)&d6d_src, 1) != 0) {
return 1;
}
if (lsm6dso_mem_bank_set(&_reg_ctx, LSM6DSO_EMBEDDED_FUNC_BANK) != 0) {
return 1;
}
if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_EMB_FUNC_SRC, (uint8_t *)&func_src, 1) != 0) {
return 1;
}
if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_EMB_FUNC_INT1, (uint8_t *)&int1_ctrl, 1) != 0) {
return 1;
}
if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_EMB_FUNC_INT2, (uint8_t *)&int2_ctrl, 1) != 0) {
return 1;
}
if (lsm6dso_mem_bank_set(&_reg_ctx, LSM6DSO_USER_BANK) != 0) {
return 1;
}
if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_MD1_CFG, (uint8_t *)&md1_cfg, 1) != 0) {
return 1;
}
if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_MD2_CFG, (uint8_t *)&md2_cfg, 1) != 0) {
return 1;
}
if (lsm6dso_tilt_flag_data_ready_get(&_reg_ctx, &tilt_ia) != 0) {
return 1;
}
if ((md1_cfg.int1_ff == 1U) || (md2_cfg.int2_ff == 1U)) {
if (wake_up_src.ff_ia == 1U) {
status->FreeFallStatus = 1;
}
}
if ((md1_cfg.int1_wu == 1U) || (md2_cfg.int2_wu == 1U)) {
if (wake_up_src.wu_ia == 1U) {
status->WakeUpStatus = 1;
}
}
if ((md1_cfg.int1_single_tap == 1U) || (md2_cfg.int2_single_tap == 1U)) {
if (tap_src.single_tap == 1U) {
status->TapStatus = 1;
}
}
if ((md1_cfg.int1_double_tap == 1U) || (md2_cfg.int2_double_tap == 1U)) {
if (tap_src.double_tap == 1U) {
status->DoubleTapStatus = 1;
}
}
if ((md1_cfg.int1_6d == 1U) || (md2_cfg.int2_6d == 1U)) {
if (d6d_src.d6d_ia == 1U) {
status->D6DOrientationStatus = 1;
}
}
if (int1_ctrl.int1_step_detector == 1U) {
if (func_src.step_detected == 1U) {
status->StepStatus = 1;
}
}
if ((int1_ctrl.int1_tilt == 1U) || (int2_ctrl.int2_tilt == 1U)) {
if (tilt_ia == 1U) {
status->TiltStatus = 1;
}
}
return 0;
}
/**
* @brief Set self test
* @param val the value of st_xl in reg CTRL5_C
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_x_self_test(uint8_t val)
{
lsm6dso_st_xl_t reg;
reg = (val == 0U) ? LSM6DSO_XL_ST_DISABLE
: (val == 1U) ? LSM6DSO_XL_ST_POSITIVE
: (val == 2U) ? LSM6DSO_XL_ST_NEGATIVE
: LSM6DSO_XL_ST_DISABLE;
if (lsm6dso_xl_self_test_set(&_reg_ctx, reg) != 0) {
return 1;
}
return 0;
}
/**
* @brief Get the LSM6DSO GYRO data ready bit value
* @param status the status of data ready bit
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_g_drdy_status(uint8_t *status)
{
if (lsm6dso_gy_flag_data_ready_get(&_reg_ctx, status) != 0) {
return 1;
}
return 0;
}
/**
* @brief Set self test
* @param val the value of st_xl in reg CTRL5_C
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_g_self_test(uint8_t val)
{
lsm6dso_st_g_t reg;
reg = (val == 0U) ? LSM6DSO_GY_ST_DISABLE
: (val == 1U) ? LSM6DSO_GY_ST_POSITIVE
: (val == 2U) ? LSM6DSO_GY_ST_NEGATIVE
: LSM6DSO_GY_ST_DISABLE;
if (lsm6dso_gy_self_test_set(&_reg_ctx, reg) != 0) {
return 1;
}
return 0;
}
/**
* @brief Get the LSM6DSO FIFO number of samples
* @param num_samples number of samples
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_fifo_num_samples(uint16_t *num_samples)
{
if (lsm6dso_fifo_data_level_get(&_reg_ctx, num_samples) != 0) {
return 1;
}
return 0;
}
/**
* @brief Get the LSM6DSO FIFO full status
* @param status FIFO full status
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_fifo_full_status(uint8_t *status)
{
lsm6dso_reg_t reg;
if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_FIFO_STATUS2, ®.byte, 1) != 0) {
return 1;
}
*status = reg.fifo_status2.fifo_full_ia;
return 0;
}
/**
* @brief Set the LSM6DSO FIFO full interrupt on INT1 pin
* @param status FIFO full interrupt on INT1 pin status
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_fifo_int1_fifo_full(uint8_t status)
{
lsm6dso_reg_t reg;
if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_INT1_CTRL, ®.byte, 1) != 0) {
return 1;
}
reg.int1_ctrl.int1_fifo_full = status;
if (lsm6dso_write_reg(&_reg_ctx, LSM6DSO_INT1_CTRL, ®.byte, 1) != 0) {
return 1;
}
return 0;
}
/**
* @brief Set the LSM6DSO FIFO watermark level
* @param watermark FIFO watermark level
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_fifo_watermark_level(uint16_t watermark)
{
if (lsm6dso_fifo_watermark_set(&_reg_ctx, watermark) != 0) {
return 1;
}
return 0;
}
/**
* @brief Set the LSM6DSO FIFO stop on watermark
* @param status FIFO stop on watermark status
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_fifo_stop_on_fth(uint8_t status)
{
if (lsm6dso_fifo_stop_on_wtm_set(&_reg_ctx, status) != 0) {
return 1;
}
return 0;
}
/**
* @brief Set the LSM6DSO FIFO mode
* @param mode FIFO mode
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_fifo_mode(uint8_t mode)
{
int ret = 0;
/* Verify that the passed parameter contains one of the valid values. */
switch ((lsm6dso_fifo_mode_t)mode) {
case LSM6DSO_BYPASS_MODE:
case LSM6DSO_FIFO_MODE:
case LSM6DSO_STREAM_TO_FIFO_MODE:
case LSM6DSO_BYPASS_TO_STREAM_MODE:
case LSM6DSO_STREAM_MODE:
break;
default:
ret = 1;
break;
}
if (ret == 1) {
return ret;
}
if (lsm6dso_fifo_mode_set(&_reg_ctx, (lsm6dso_fifo_mode_t)mode) != 0) {
return 1;
}
return ret;
}
/**
* @brief Get the LSM6DSO FIFO tag
* @param tag FIFO tag
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_fifo_tag(uint8_t *tag)
{
lsm6dso_fifo_tag_t tag_local;
if (lsm6dso_fifo_sensor_tag_get(&_reg_ctx, &tag_local) != 0) {
return 1;
}
*tag = (uint8_t)tag_local;
return 0;
}
/**
* @brief Get the LSM6DSO FIFO raw data
* @param data FIFO raw data array [6]
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_fifo_data(uint8_t *data)
{
if (lsm6dso_read_reg(&_reg_ctx, LSM6DSO_FIFO_DATA_OUT_X_L, data, 6) != 0) {
return 1;
}
return 0;
}
/**
* @brief Get the LSM6DSO FIFO accelero single sample (16-bit data per 3 axes) and calculate acceleration [mg]
* @param acceleration FIFO accelero axes [mg]
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_fifo_x_axes(int32_t *acceleration)
{
uint8_t data[6];
int16_t data_raw[3];
float sensitivity = 0.0f;
float acceleration_float[3];
if (get_fifo_data(data) != 0) {
return 1;
}
data_raw[0] = ((int16_t)data[1] << 8) | data[0];
data_raw[1] = ((int16_t)data[3] << 8) | data[2];
data_raw[2] = ((int16_t)data[5] << 8) | data[4];
if (get_x_sensitivity(&sensitivity) != 0) {
return 1;
}
acceleration_float[0] = (float)data_raw[0] * sensitivity;
acceleration_float[1] = (float)data_raw[1] * sensitivity;
acceleration_float[2] = (float)data_raw[2] * sensitivity;
acceleration[0] = (int32_t)acceleration_float[0];
acceleration[1] = (int32_t)acceleration_float[1];
acceleration[2] = (int32_t)acceleration_float[2];
return 0;
}
/**
* @brief Set the LSM6DSO FIFO accelero BDR value
* @param bdr FIFO accelero BDR value
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_fifo_x_bdr(float bdr)
{
lsm6dso_bdr_xl_t new_bdr;
new_bdr = (bdr <= 0.0f) ? LSM6DSO_XL_NOT_BATCHED
: (bdr <= 12.5f) ? LSM6DSO_XL_BATCHED_AT_12Hz5
: (bdr <= 26.0f) ? LSM6DSO_XL_BATCHED_AT_26Hz
: (bdr <= 52.0f) ? LSM6DSO_XL_BATCHED_AT_52Hz
: (bdr <= 104.0f) ? LSM6DSO_XL_BATCHED_AT_104Hz
: (bdr <= 208.0f) ? LSM6DSO_XL_BATCHED_AT_208Hz
: (bdr <= 416.0f) ? LSM6DSO_XL_BATCHED_AT_417Hz
: (bdr <= 833.0f) ? LSM6DSO_XL_BATCHED_AT_833Hz
: (bdr <= 1660.0f) ? LSM6DSO_XL_BATCHED_AT_1667Hz
: (bdr <= 3330.0f) ? LSM6DSO_XL_BATCHED_AT_3333Hz
: LSM6DSO_XL_BATCHED_AT_6667Hz;
if (lsm6dso_fifo_xl_batch_set(&_reg_ctx, new_bdr) != 0) {
return 1;
}
return 0;
}
/**
* @brief Get the LSM6DSO FIFO gyro single sample (16-bit data per 3 axes) and calculate angular velocity [mDPS]
* @param angular_velocity FIFO gyro axes [mDPS]
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::get_fifo_g_axes(int32_t *angular_velocity)
{
uint8_t data[6];
int16_t data_raw[3];
float sensitivity = 0.0f;
float angular_velocity_float[3];
if (get_fifo_data(data) != 0) {
return 1;
}
data_raw[0] = ((int16_t)data[1] << 8) | data[0];
data_raw[1] = ((int16_t)data[3] << 8) | data[2];
data_raw[2] = ((int16_t)data[5] << 8) | data[4];
if (get_g_sensitivity(&sensitivity) != 0) {
return 1;
}
angular_velocity_float[0] = (float)data_raw[0] * sensitivity;
angular_velocity_float[1] = (float)data_raw[1] * sensitivity;
angular_velocity_float[2] = (float)data_raw[2] * sensitivity;
angular_velocity[0] = (int32_t)angular_velocity_float[0];
angular_velocity[1] = (int32_t)angular_velocity_float[1];
angular_velocity[2] = (int32_t)angular_velocity_float[2];
return 0;
}
/**
* @brief Set the LSM6DSO FIFO gyro BDR value
* @param bdr FIFO gyro BDR value
* @retval 0 in case of success, an error code otherwise
*/
int LSM6DSOSensor::set_fifo_g_bdr(float bdr)
{
lsm6dso_bdr_gy_t new_bdr;
new_bdr = (bdr <= 0.0f) ? LSM6DSO_GY_NOT_BATCHED
: (bdr <= 12.5f) ? LSM6DSO_GY_BATCHED_AT_12Hz5
: (bdr <= 26.0f) ? LSM6DSO_GY_BATCHED_AT_26Hz
: (bdr <= 52.0f) ? LSM6DSO_GY_BATCHED_AT_52Hz
: (bdr <= 104.0f) ? LSM6DSO_GY_BATCHED_AT_104Hz
: (bdr <= 208.0f) ? LSM6DSO_GY_BATCHED_AT_208Hz
: (bdr <= 416.0f) ? LSM6DSO_GY_BATCHED_AT_417Hz
: (bdr <= 833.0f) ? LSM6DSO_GY_BATCHED_AT_833Hz
: (bdr <= 1660.0f) ? LSM6DSO_GY_BATCHED_AT_1667Hz
: (bdr <= 3330.0f) ? LSM6DSO_GY_BATCHED_AT_3333Hz
: LSM6DSO_GY_BATCHED_AT_6667Hz;
if (lsm6dso_fifo_gy_batch_set(&_reg_ctx, new_bdr) != 0) {
return 1;
}
return 0;
}
int32_t LSM6DSO_io_write(void *handle, uint8_t WriteAddr, uint8_t *pBuffer, uint16_t nBytesToWrite)
{
return ((LSM6DSOSensor *)handle)->io_write(pBuffer, WriteAddr, nBytesToWrite);
}
int32_t LSM6DSO_io_read(void *handle, uint8_t ReadAddr, uint8_t *pBuffer, uint16_t nBytesToRead)
{
return ((LSM6DSOSensor *)handle)->io_read(pBuffer, ReadAddr, nBytesToRead);
}