USB Host Driver with Socket Modem support. Works with revision 323 of mbed-src but broken with any later version.
Dependencies: FATFileSystem
Fork of F401RE-USBHost by
USBHost/USBHALHost_LPC4088.cpp
- Committer:
- fritz291
- Date:
- 2015-06-26
- Revision:
- 26:53970cabf56d
- Parent:
- 18:61554f238584
File content as of revision 26:53970cabf56d:
/* mbed USBHost Library * Copyright (c) 2006-2013 ARM Limited * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #if defined(TARGET_LPC4088)||defined(TARGET_LPC1768) #include "USBHALHost.h" #ifndef CTASSERT template <bool>struct CtAssert; template <>struct CtAssert<true> {}; #define CTASSERT(A) CtAssert<A>(); #endif #ifdef _USB_DBG #define USB_DBG(...) do{fprintf(stderr,"[%s@%d] ",__PRETTY_FUNCTION__,__LINE__);fprintf(stderr,__VA_ARGS__);fprintf(stderr,"\n");} while(0); #define USB_DBG_HEX(A,B) debug_hex(A,B) #define USB_DBG_ED(A) while(0) #define USB_DBG_TD(A) while(0) #define USB_DBG_ED_IF(A,B) while(0) void debug_hex(uint8_t* buf, int size); #else #define USB_DBG(...) while(0) #define USB_DBG_ED(A) while(0) #define USB_DBG_TD(A) while(0) #define USB_DBG_ED_IF(A,B) while(0) #define USB_DBG_HEX(A,B) while(0) #endif #define USB_TRACE1(A) while(0) #ifdef _USB_TEST #undef USB_TEST_ASSERT void usb_test_assert_internal(const char *expr, const char *file, int line); #define USB_TEST_ASSERT(EXPR) while(!(EXPR)){usb_test_assert_internal(#EXPR,__FILE__,__LINE__);} #else #define USB_TEST_ASSERT(EXPR) while(0) #endif #define USB_INFO(...) do{fprintf(stderr,__VA_ARGS__);fprintf(stderr,"\n");}while(0); // bits of the USB/OTG clock control register #define HOST_CLK_EN (1<<0) #define DEV_CLK_EN (1<<1) #define PORTSEL_CLK_EN (1<<3) #define AHB_CLK_EN (1<<4) // bits of the USB/OTG clock status register #define HOST_CLK_ON (1<<0) #define DEV_CLK_ON (1<<1) #define PORTSEL_CLK_ON (1<<3) #define AHB_CLK_ON (1<<4) // we need host clock, OTG/portsel clock and AHB clock #define CLOCK_MASK (HOST_CLK_EN | PORTSEL_CLK_EN | AHB_CLK_EN) #define FI 0x2EDF /* 12000 bits per frame (-1) */ #define DEFAULT_FMINTERVAL ((((6 * (FI - 210)) / 7) << 16) | FI) USBHALHost* USBHALHost::instHost; USBHALHost::USBHALHost() { instHost = this; } void USBHALHost::init() { NVIC_DisableIRQ(USB_IRQn); m_pHcca = new HCCA(); init_hw_ohci(m_pHcca); ResetRootHub(); NVIC_SetVector(USB_IRQn, (uint32_t)_usbisr); NVIC_SetPriority(USB_IRQn, 0); NVIC_EnableIRQ(USB_IRQn); USB_INFO("Simple USBHost Library for LPC4088/LPC1768"); bool lowSpeed = wait_attach(); addDevice(NULL, 0, lowSpeed); } void USBHALHost::init_hw_ohci(HCCA* pHcca) { LPC_SC->PCONP &= ~(1UL<<31); //Cut power wait_ms(1000); LPC_SC->PCONP |= (1UL<<31); // turn on power for USB LPC_USB->USBClkCtrl |= CLOCK_MASK; // Enable USB host clock, port selection and AHB clock // Wait for clocks to become available while ((LPC_USB->USBClkSt & CLOCK_MASK) != CLOCK_MASK) ; LPC_USB->OTGStCtrl |= 1; LPC_USB->USBClkCtrl &= ~PORTSEL_CLK_EN; #if defined(TARGET_LPC1768) LPC_PINCON->PINSEL1 &= ~((3<<26) | (3<<28)); LPC_PINCON->PINSEL1 |= ((1<<26)|(1<<28)); // 0x14000000 #elif defined(TARGET_LPC4088) LPC_IOCON->P0_29 = 0x01; // USB_D+1 LPC_IOCON->P0_30 = 0x01; // USB_D-1 // DO NOT CHANGE P1_19. #else #error "target error" #endif USB_DBG("initialize OHCI\n"); wait_ms(100); /* Wait 50 ms before apply reset */ USB_TEST_ASSERT((LPC_USB->HcRevision&0xff) == 0x10); // check revision LPC_USB->HcControl = 0; /* HARDWARE RESET */ LPC_USB->HcControlHeadED = 0; /* Initialize Control list head to Zero */ LPC_USB->HcBulkHeadED = 0; /* Initialize Bulk list head to Zero */ /* SOFTWARE RESET */ LPC_USB->HcCommandStatus = OR_CMD_STATUS_HCR; LPC_USB->HcFmInterval = DEFAULT_FMINTERVAL; /* Write Fm Interval and Largest Data Packet Counter */ LPC_USB->HcPeriodicStart = FI*90/100; /* Put HC in operational state */ LPC_USB->HcControl = (LPC_USB->HcControl & (~OR_CONTROL_HCFS)) | OR_CONTROL_HC_OPER; LPC_USB->HcRhStatus = OR_RH_STATUS_LPSC; /* Set Global Power */ USB_TEST_ASSERT(pHcca); for (int i = 0; i < 32; i++) { pHcca->InterruptTable[i] = NULL; } LPC_USB->HcHCCA = reinterpret_cast<uint32_t>(pHcca); LPC_USB->HcInterruptStatus |= LPC_USB->HcInterruptStatus; /* Clear Interrrupt Status */ LPC_USB->HcInterruptEnable = OR_INTR_ENABLE_MIE|OR_INTR_ENABLE_WDH|OR_INTR_ENABLE_FNO; LPC_USB->HcRhPortStatus1 = OR_RH_PORT_CSC; LPC_USB->HcRhPortStatus1 = OR_RH_PORT_PRSC; } void USBHALHost::ResetRootHub() { wait_ms(100); /* USB 2.0 spec says at least 50ms delay before port reset */ LPC_USB->HcRhPortStatus1 = OR_RH_PORT_PRS; // Initiate port reset USB_DBG("Before loop\n"); while (LPC_USB->HcRhPortStatus1 & OR_RH_PORT_PRS) ; LPC_USB->HcRhPortStatus1 = OR_RH_PORT_PRSC; // ...and clear port reset signal USB_DBG("After loop\n"); wait_ms(200); /* Wait for 100 MS after port reset */ } bool USBHALHost::wait_attach() { bool lowSpeed = false; uint32_t status = LPC_USB->HcRhPortStatus1; if (status & OR_RH_PORT_LSDA) { // lowSpeedDeviceAttached lowSpeed = true; } return lowSpeed; } void enable(ENDPOINT_TYPE type) { switch(type) { case CONTROL_ENDPOINT: LPC_USB->HcCommandStatus |= OR_CMD_STATUS_CLF; LPC_USB->HcControl |= OR_CONTROL_CLE; break; case ISOCHRONOUS_ENDPOINT: LPC_USB->HcControl |= OR_CONTROL_PLE; break; case BULK_ENDPOINT: LPC_USB->HcCommandStatus |= OR_CMD_STATUS_BLF; LPC_USB->HcControl |= OR_CONTROL_BLE; break; case INTERRUPT_ENDPOINT: LPC_USB->HcControl |= OR_CONTROL_PLE; break; } } void USBHALHost::token_init(USBEndpoint* ep) { HCED* ed = ep->getHALData<HCED*>(); if (ed == NULL) { ed = new HCED(ep); ep->setHALData<HCED*>(ed); } USBDeviceConnected* dev = ep->getDevice(); USB_TEST_ASSERT(dev); if (dev) { uint8_t devAddr = dev->getAddress(); USB_DBG("devAddr=%02x", devAddr); ed->setFunctionAddress(devAddr); } uint16_t size = ep->getSize(); USB_DBG("MaxPacketSize=%d", size); ed->setMaxPacketSize(size); if (ed->HeadTd == NULL) { HCTD* td = new HCTD(ed); ed->TailTd = td; ed->HeadTd = td; switch(ep->getType()) { case CONTROL_ENDPOINT: ed->Next = reinterpret_cast<HCED*>(LPC_USB->HcControlHeadED); LPC_USB->HcControlHeadED = reinterpret_cast<uint32_t>(ed); break; case BULK_ENDPOINT: ed->Next = reinterpret_cast<HCED*>(LPC_USB->HcBulkHeadED); LPC_USB->HcBulkHeadED = reinterpret_cast<uint32_t>(ed); break; case INTERRUPT_ENDPOINT: HCCA* pHcca = reinterpret_cast<HCCA*>(LPC_USB->HcHCCA); ed->Next = pHcca->InterruptTable[0]; pHcca->InterruptTable[0] = ed; break; } } } int USBHALHost::token_setup(USBEndpoint* ep, SETUP_PACKET* setup, uint16_t wLength) { token_init(ep); HCED* ed = ep->getHALData<HCED*>(); HCTD* td = ed->TailTd; setup->wLength = wLength; TBUF* tbuf = new(sizeof(SETUP_PACKET))TBUF(setup, sizeof(SETUP_PACKET)); td->transfer(tbuf, sizeof(SETUP_PACKET)); td->Control |= TD_TOGGLE_0|TD_SETUP; // DATA0 HCTD* blank = new HCTD(ed); ed->enqueue(blank); //DBG_ED(ed); enable(ep->getType()); td = ed->get_queue_HCTD(); USB_TEST_ASSERT(td); int result = td->getLengthTransferred(); USB_DBG_TD(td); delete tbuf; delete td; return result; } static HCED* getHCED_iso(USBEndpoint* ep) { HCED* ed = ep->getHALData<HCED*>(); if (ed != NULL) { return ed; } ed = new HCED(ep); ep->setHALData<HCED*>(ed); ed->setFormat(); // F Format ITD ed->iso.FrameCount = ep->ohci.frameCount; ed->iso.queue_limit = ep->ohci.queueLimit; ed->iso.queue_count = 0; ed->iso.Current_FrameCount = 0; ed->iso.Current_itd = NULL; ed->iso.FrameNumber = LPC_USB->HcFmNumber + 10; // after 10msec HCITD* itd = ed->new_HCITD(); ed->init_queue(reinterpret_cast<HCTD*>(itd)); HCCA* hcca = reinterpret_cast<HCCA*>(LPC_USB->HcHCCA); hcca->enqueue(ed); LPC_USB->HcControl |= OR_CONTROL_PLE; // PeriodicListEnable LPC_USB->HcControl |= OR_CONTROL_IE; // IsochronousEnable return ed; } static void enablePeriodic() { LPC_USB->HcControl |= OR_CONTROL_PLE; } HCITD* isochronousReceive(USBEndpoint* ep) { HCED* ed = getHCED_iso(ep); USB_TEST_ASSERT(ed); while(ed->iso.queue_count < ed->iso.queue_limit) { HCITD* blank_itd = ed->new_HCITD(); if (ed->enqueue(reinterpret_cast<HCTD*>(blank_itd))) { ed->iso.queue_count++; } enablePeriodic(); } HCITD* itd = ed->get_queue_HCITD(); if (itd) { ed->iso.queue_count--; } return itd; } int USBHALHost::token_iso_in(USBEndpoint* ep, uint8_t* data, int size) { HCED* ed = getHCED_iso(ep); if (ed->iso.Current_FrameCount == 0) { HCITD* itd = isochronousReceive(ep); if (itd == NULL) { return -1; } if (itd->ConditionCode() != 0) { delete itd; return -1; } ed->iso.Current_itd = itd; } HCITD* itd = ed->iso.Current_itd; int fc = ed->iso.Current_FrameCount; int result = -1; uint8_t cc = itd->ConditionCode(fc); if (cc == 0 || cc == 9) { result = itd->Length(fc); memcpy(data, itd->Buffer(fc), result); } if (++ed->iso.Current_FrameCount >= itd->FrameCount()) { ed->iso.Current_FrameCount = 0; delete ed->iso.Current_itd; } return result; } int USBHALHost::multi_token_in(USBEndpoint* ep, uint8_t* data, int size) { token_init(ep); HCED* ed = ep->getHALData<HCED*>(); HCTD* td = ed->TailTd; TBUF* tbuf = NULL; if (data != NULL) { tbuf = new(size)TBUF(); td->transfer(tbuf, size); } td->Control |= TD_IN; HCTD* blank = new HCTD(ed); ed->enqueue(blank); USB_DBG_ED_IF(ed->EndpointNumber()==0, ed); // control transfer enable(ep->getType()); td = ed->get_queue_HCTD(); USB_TEST_ASSERT(td); if (data != NULL) { memcpy(data, tbuf->buf, size); delete tbuf; } int result = td->getLengthTransferred(); delete td; return result; } int USBHALHost::multi_token_out(USBEndpoint* ep, const uint8_t* data, int size) { token_init(ep); HCED* ed = ep->getHALData<HCED*>(); HCTD* td = ed->TailTd; TBUF* tbuf = NULL; if (data != NULL) { tbuf = new(size)TBUF(data, size); td->transfer(tbuf, size); } td->Control |= TD_OUT; HCTD* blank = new HCTD(ed); ed->enqueue(blank); USB_DBG_ED(ed); enable(ep->getType()); td = ed->get_queue_HCTD(); USB_TEST_ASSERT(td); if (data != NULL) { delete tbuf; } int result = td->getLengthTransferred(); delete td; return result; } void USBHALHost::multi_token_inNB(USBEndpoint* ep, uint8_t* data, int size) { token_init(ep); HCED* ed = ep->getHALData<HCED*>(); HCTD* td = ed->TailTd; TBUF* tbuf = new(size)TBUF(); td->transfer(tbuf, size); td->Control |= TD_IN; HCTD* blank = new HCTD(ed); ed->enqueue(blank); enable(ep->getType()); } USB_TYPE USBHALHost::multi_token_inNB_result(USBEndpoint* ep) { HCED* ed = ep->getHALData<HCED*>(); if (ed == NULL) { return USB_TYPE_ERROR; } HCTD* td = ed->get_queue_HCTD(0); if (td) { int len = td->getLengthTransferred(); TBUF* tbuf = (TBUF*)td->buf_top; memcpy(ep->getBufStart(), tbuf->buf, len); ep->setLengthTransferred(len); ep->setState((USB_TYPE)td->ConditionCode()); delete td; delete tbuf; return USB_TYPE_OK; } return USB_TYPE_PROCESSING; } void USBHALHost::setToggle(USBEndpoint* ep, uint8_t toggle) { USB_TEST_ASSERT(toggle == 1); HCED* ed = ep->getHALData<HCED*>(); ed->setToggle(toggle); } void USBHALHost::_usbisr(void) { if (instHost) { instHost->UsbIrqhandler(); } } HCTD* td_reverse(HCTD* td) { HCTD* result = NULL; HCTD* next; while(td) { next = const_cast<HCTD*>(td->Next); td->Next = result; result = td; td = next; } return result; } void USBHALHost::UsbIrqhandler() { if (!(LPC_USB->HcInterruptStatus & LPC_USB->HcInterruptEnable)) { return; } m_report_irq++; uint32_t status = LPC_USB->HcInterruptStatus; if (status & OR_INTR_STATUS_FNO) { m_report_FNO++; } if (status & OR_INTR_STATUS_WDH) { union { HCTD* done_td; uint32_t lsb; }; done_td = const_cast<HCTD*>(m_pHcca->DoneHead); USB_TEST_ASSERT(done_td); m_pHcca->DoneHead = NULL; // reset if (lsb & 1) { // error ? lsb &= ~1; } HCTD* td = td_reverse(done_td); while(td) { HCED* ed = td->parent; USB_TEST_ASSERT(ed); if (ed) { ed->irqWdhHandler(td); } td = td->Next; } m_report_WDH++; } LPC_USB->HcInterruptStatus = status; // Clear Interrrupt Status } TBUF::TBUF(const void* data, int size) { if (size > 0) { memcpy(buf, data, size); } } HCTD::HCTD(HCED* obj) { CTASSERT(sizeof(HCTD) == 36); USB_TEST_ASSERT(obj); Control = TD_CC|TD_ROUNDING; CurrBufPtr = NULL; Next = NULL; BufEnd = NULL; buf_top = NULL; buf_size = 0; parent = obj; } HCITD::HCITD(HCED* obj, uint16_t FrameNumber, int FrameCount, uint16_t PacketSize) { Control = 0xe0000000 | // CC ConditionCode NOT ACCESSED ((FrameCount-1) << 24)| // FC FrameCount TD_DELAY_INT(0) | // DI DelayInterrupt FrameNumber; // SF StartingFrame BufferPage0 = const_cast<uint8_t*>(buf); BufferEnd = const_cast<uint8_t*>(buf) + PacketSize * FrameCount - 1; Next = NULL; parent = obj; uint32_t addr = reinterpret_cast<uint32_t>(buf); for(int i = 0; i < FrameCount; i++) { uint16_t offset = addr & 0x0fff; if ((addr&0xfffff000) == (reinterpret_cast<uint32_t>(BufferEnd)&0xfffff000)) { offset |= 0x1000; } OffsetPSW[i] = 0xe000|offset; addr += PacketSize; } } uint8_t* HCITD::Buffer(int fc) { int offset = fc * parent->getMaxPacketSize(); return const_cast<uint8_t*>(buf) + offset; } HCED::HCED(USBEndpoint* ep) { CTASSERT(sizeof(HCED) <= (64*2)); USBDeviceConnected* dev = ep->getDevice(); int devAddr = 0; bool lowSpeed = false; if (dev) { devAddr = dev->getAddress(); lowSpeed = dev->getSpeed(); } int ep_number = ep->getAddress(); int MaxPacketSize = ep->getSize(); Control = devAddr | /* USB address */ ((ep_number & 0x7F) << 7) | /* Endpoint address */ (ep_number!=0?(((ep_number&0x80)?2:1) << 11):0)| /* direction : Out = 1, 2 = In */ ((lowSpeed?1:0) << 13) | /* speed full=0 low=1 */ (MaxPacketSize << 16); /* MaxPkt Size */ TailTd = NULL; HeadTd = NULL; Next = NULL; } bool HCED::enqueue(HCTD* td) { if (td) { HCTD* tail = reinterpret_cast<HCTD*>(TailTd); if (tail) { tail->Next = td; TailTd = reinterpret_cast<HCTD*>(td); return true; } } return false; } void HCED::init_queue(HCTD* td) { TailTd = reinterpret_cast<HCTD*>(td); HeadTd = reinterpret_cast<HCTD*>(td); } void HCED::setToggle(uint8_t toggle) { uint32_t c = reinterpret_cast<uint32_t>(HeadTd); if (toggle == 0) { // DATA0 c &= ~0x02; } else { // DATA1 c |= 0x02; } HeadTd = reinterpret_cast<HCTD*>(c); } uint8_t HCED::getToggle() { uint32_t c = reinterpret_cast<uint32_t>(HeadTd); return (c&0x02) ? 1 : 0; } HCTD* HCED::get_queue_HCTD(uint32_t millisec) { for(int i = 0; i < 16; i++) { osEvent evt = done_queue_get(millisec); if (evt.status == osEventMessage) { HCTD* td = reinterpret_cast<HCTD*>(evt.value.p); USB_TEST_ASSERT(td); uint8_t cc = td->ConditionCode(); if (cc != 0) { m_ConditionCode = cc; USB_DBG_TD(td); } return td; } else if (evt.status == osOK) { continue; } else if (evt.status == osEventTimeout) { return NULL; } else { USB_DBG("evt.status: %02x\n", evt.status); USB_TEST_ASSERT(evt.status == osEventMessage); } } return NULL; } HCITD* HCED::get_queue_HCITD() { osEvent evt = done_queue_get(0); if (evt.status == osEventMessage) { HCITD* itd = reinterpret_cast<HCITD*>(evt.value.p); USB_TEST_ASSERT(itd); return itd; } return NULL; } HCITD* HCED::new_HCITD() { uint16_t mps = getMaxPacketSize(); int total_size = mps * iso.FrameCount; HCITD* itd = new(total_size)HCITD(this, iso.FrameNumber, iso.FrameCount, mps); iso.FrameNumber += iso.FrameCount; return itd; } void HCCA::enqueue(HCED* ed) { for(int i = 0; i < 32; i++) { if (InterruptTable[i] == NULL) { InterruptTable[i] = ed; } else { HCED* nextEd = InterruptTable[i]; while(nextEd->Next && nextEd->Next != ed) { nextEd = nextEd->Next; } nextEd->Next = ed; } } } #endif // defined(TARGET_LPC4088)||defined(TARGET_LPC1768)