東北大学学友会準加盟団体 From The Earth の高高度ロケットFTE-06(通称:海豚)にて使用したソフトウェアです.ご自由にお使いください.このプログラムによって生じた損害について当団体は一切責任を負いません.また,各モジュールのライブラリは当団体が作成したものではないので再配布は禁止します.

Dependencies:   mbed FATFileSystem

Fork of FTE-06 by Tetsushi Amano

GPS/GPS.cpp

Committer:
mizuki_akaike
Date:
2017-08-22
Revision:
48:58213015bb90
Parent:
46:a8617076f021
Child:
50:0dbbd39a54bb

File content as of revision 48:58213015bb90:

#include "GPS.h"

GPS::GPS(PinName tx, PinName rx) : _gps(tx, rx) {
    _gps.baud(9600);
    nmea_longitude = 0.0;
    nmea_latitude = 0.0;
    utc_time = 0;
    ns = ' ';
    ew = ' ';
    lock = 0;
    satelites = 0;
    hdop = 0.0;
    msl_altitude = 0.0;
    msl_units = ' ';

    rmc_status = ' ';
    speed_k = 0.0;
    course_d = 0.0;
    date = 0;

    dec_longitude = 0.0;
    dec_latitude = 0.0;

    gll_status = ' ';

    course_t = 0.0; // ground speed true
    course_t_unit = ' ';
    course_m = 0.0; // magnetic
    course_m_unit = ' ';
    speed_k_unit = ' ';
    speed_km = 0.0; // speek km/hr
    speed_km_unit = ' ';

    altitude_ft = 0.0;
#ifdef OPEN_LOG
    is_logging = false;
#endif
}

#ifdef OPEN_LOG
void GPS::start_log() {
    is_logging = true;
}

void GPS::new_file(void) {
    _openLog.newFile();
}

void GPS::stop_log(void) {
    is_logging = false;
}
#endif

float GPS::nmea_to_dec(float deg_coord, char nsew) {
    int degree = (int)(deg_coord/100);
    float minutes = deg_coord - degree*100;
    float dec_deg = minutes / 60;
    float decimal = degree + dec_deg;
    if (nsew == 'S' || nsew == 'W') { // return negative
        decimal *= -1;
    }
    return decimal;
}

int GPS::sample() {
    int line_parsed = 0;

    if (_gps.readable()) {
        getline();
    
#ifdef OPEN_LOG
        if (is_logging && lock) {
            format_for_log();
            _openLog.write(bfr);
        }
#endif
        // Check if it is a GPGGA msg (matches both locked and non-locked msg)
        if (sscanf(msg, "GPGGA,%f,%f,%c,%f,%c,%d,%d,%f,%f,%c", &utc_time, &nmea_latitude, &ns, &nmea_longitude, &ew, &lock, &satelites, &hdop, &msl_altitude, &msl_units) >= 1) {
            line_parsed = GGA;
        }
        // Check if it is a GPRMC msg
        else if (sscanf(msg, "GPRMC,%f,%c,%f,%c,%f,%f,%d", &utc_time, &ns, &nmea_longitude, &ew, &speed_k, &course_d, &date) >= 1) {
            line_parsed = RMC;
        }
        // GLL - Geographic Position-Lat/Lon
        else if (sscanf(msg, "GPGLL,%f,%c,%f,%c,%f,%c", &nmea_latitude, &ns, &nmea_longitude, &ew, &utc_time, &gll_status) >= 1) {
            line_parsed = GLL;
        }
        // VTG-Course Over Ground and Ground Speed
        else if (sscanf(msg, "GPVTG,%f,%c,%f,%c,%f,%c,%f,%c", &course_t, &course_t_unit, &course_m, &course_m_unit, &speed_k, &speed_k_unit, &speed_km, &speed_km_unit) >= 1) {
            line_parsed = VTG;
        }
        
        if(satelites == 0) {
            lock = 0;
        }
    }
    if (!lock) {
        return NO_LOCK;
    } else if (line_parsed) {
        return line_parsed;
    } else {
        return NOT_PARSED;
    }
}


// INTERNAL FUNCTINS ////////////////////////////////////////////////////////////
float GPS::trunc(float v) {
    if (v < 0.0) {
        v*= -1.0;
        v = floor(v);
        v*=-1.0;
    } else {
        v = floor(v);
    }
    return v;
}

void GPS::getline() {
    while (_gps.getc() != '$');   // wait for the start of a line
    for (int i=0; i<1022; i++) {
        msg[i] = _gps.getc();
        if (msg[i] == '\r') {
            msg[i] = 0;
            return;
        }
    }
    error("Overflow in getline");
}

void GPS::format_for_log() {
    bfr[0] = '$';
    for (int i = 0; i < 1022; i++) {
        bfr[i+1] = msg[i];
        if (msg[i] == 0 || msg[i] =='$') {
            bfr[i+1] = '\r';
            bfr[i+2] = '\n';
            bfr[i+3] = 0;
            return;
        }
    }
    error("Overflow in format");
}

// GET FUNCTIONS /////////////////////////////////////////////////////////////////
float GPS::get_msl_altitude() {
    if (!lock)
        return 0.0;
    else
        return msl_altitude;
}

int GPS::get_satelites() {
    if (!lock)
        return 0;
    else
        return satelites;
}

float GPS::get_nmea_longitude() {
    if (!lock)
        return 0.0;
    else
        return nmea_longitude;
}

float GPS::get_dec_longitude() {
    dec_longitude = nmea_to_dec(nmea_longitude, ew);
    if (!lock)
        return 0.0;
    else
        return dec_longitude;
}

float GPS::get_nmea_latitude() {
    if (!lock)
        return 0.0;
    else
        return nmea_latitude;
}

float GPS::get_dec_latitude() {
    dec_latitude = nmea_to_dec(nmea_latitude, ns);
    if (!lock)
        return 0.0;
    else
        return dec_latitude;
}

float GPS::get_course_t() {
    if (!lock)
        return 0.0;
    else
        return course_t;
}

float GPS::get_course_m() {
    if (!lock)
        return 0.0;
    else
        return course_m;
}

float GPS::get_speed_k() {
    if (!lock)
        return 0.0;
    else
        return speed_k;
}

float GPS::get_speed_km() {
    if (!lock)
        return 0.0;
    else
        return speed_km;
}

float GPS::get_altitude_ft() {
    if (!lock)
        return 0.0;
    else
        return 3.280839895*msl_altitude;
}

// NAVIGATION FUNCTIONS ////////////////////////////////////////////////////////////
float GPS::calc_course_to(float pointLat, float pontLong) {
    const double d2r = PI / 180.0;
    const double r2d = 180.0 / PI;
    double dlat = abs(pointLat - get_dec_latitude()) * d2r;
    double dlong = abs(pontLong - get_dec_longitude()) * d2r;
    double y = sin(dlong) * cos(pointLat * d2r);
    double x = cos(get_dec_latitude()*d2r)*sin(pointLat*d2r) - sin(get_dec_latitude()*d2r)*cos(pointLat*d2r)*cos(dlong);
    return atan2(y,x)*r2d;
}    

/*
var y = Math.sin(dLon) * Math.cos(lat2);
var x = Math.cos(lat1)*Math.sin(lat2) -
        Math.sin(lat1)*Math.cos(lat2)*Math.cos(dLon);
var brng = Math.atan2(y, x).toDeg();
*/

/*
            The Haversine formula according to Dr. Math.
            http://mathforum.org/library/drmath/view/51879.html
                
            dlon = lon2 - lon1
            dlat = lat2 - lat1
            a = (sin(dlat/2))^2 + cos(lat1) * cos(lat2) * (sin(dlon/2))^2
            c = 2 * atan2(sqrt(a), sqrt(1-a)) 
            d = R * c
                
            Where
                * dlon is the change in longitude
                * dlat is the change in latitude
                * c is the great circle distance in Radians.
                * R is the radius of a spherical Earth.
                * The locations of the two points in 
                    spherical coordinates (longitude and 
                    latitude) are lon1,lat1 and lon2, lat2.
*/
double GPS::calc_dist_to_mi(float pointLat, float pontLong) {
    const double d2r = PI / 180.0;
    double dlat = pointLat - get_dec_latitude();
    double dlong = pontLong - get_dec_longitude();
    double a = pow(sin(dlat/2.0),2.0) + cos(get_dec_latitude()*d2r) * cos(pointLat*d2r) * pow(sin(dlong/2.0),2.0);
    double c = 2.0 * asin(sqrt(abs(a)));
    double d = 63.765 * c;
    
    return d;
}

double GPS::calc_dist_to_ft(float pointLat, float pontLong) {
    return calc_dist_to_mi(pointLat, pontLong)*5280.0;
}

double GPS::calc_dist_to_km(float pointLat, float pontLong) {
    return calc_dist_to_mi(pointLat, pontLong)*1.609344;
}

double GPS::calc_dist_to_m(float pointLat, float pontLong) {
    return calc_dist_to_mi(pointLat, pontLong)*1609.344;
}