Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed EC PathFollowing-ver11 CruizCore_R1370P
Revision 3:e696a6dd4254, committed 2018-11-24
- Comitter:
- yuki0701
- Date:
- Sat Nov 24 14:45:01 2018 +0000
- Parent:
- 2:e04e6b5d6584
- Child:
- 4:65dbc0080845
- Commit message:
Changed in this revision
--- a/PathFollowing.lib Sat Nov 17 05:35:23 2018 +0000 +++ b/PathFollowing.lib Sat Nov 24 14:45:01 2018 +0000 @@ -1,1 +1,1 @@ -https://os.mbed.com/teams/F3RC4/code/PathFollowing/#591749f315ac +https://os.mbed.com/teams/F3RC4/code/PathFollowing/#d438093cb464
--- a/main.cpp Sat Nov 17 05:35:23 2018 +0000
+++ b/main.cpp Sat Nov 24 14:45:01 2018 +0000
@@ -20,9 +20,10 @@
#define SPI_BITS 16
#define SPI_MODE 0
#define SPI_WAIT_US 1 // 1us
-SPI spi(PB_5,PB_4,PB_3);
+//SPI spi(PB_5,PB_4,PB_3); //Nucleo
+SPI spi(p5,p6,p7); //mbed
-DigitalOut ss_md1(PB_15); //エスコンの設定
+/*DigitalOut ss_md1(PB_15); //エスコンの設定
DigitalOut ss_md2(PB_14);
DigitalOut ss_md3(PB_13);
DigitalOut ss_md4(PC_4);
@@ -31,7 +32,18 @@
//DigitalIn md_ch_enable(p10); // check enable switch is open or close
//Timer md_disable;
DigitalOut md_stop(PA_14); // stop all motor
-DigitalIn md_check(PB_7); // check error of all motor driver //とりあえず使わない
+DigitalIn md_check(PB_7); // check error of all motor driver //とりあえず使わない*/
+
+DigitalOut ss_md1(p15); //エスコンの設定
+DigitalOut ss_md2(p16);
+DigitalOut ss_md3(p17);
+DigitalOut ss_md4(p18);
+
+DigitalOut md_enable(p25);
+//Timer md_disable;
+DigitalOut md_stop(p24); // stop all motor
+DigitalIn md_check(p23); // check error of all motor driver //とりあえず使わない
+
/*モーターの配置
* md1//---F---\\md4
@@ -42,12 +54,16 @@
*/
-Ec EC1(PC_6,PC_8,NC,500,0.05);
-Ec EC2(PB_1,PB_12,NC,500,0.05); //エンコーダ
+//Ec EC1(PC_6,PC_8,NC,500,0.05);
+//Ec EC2(PB_1,PB_12,NC,500,0.05); //Nucleo
+
+Ec EC1(p21,p22,NC,500,0.05);
+Ec EC2(p8,p26,NC,500,0.05); //←mbad
Ticker motor_tick; //角速度計算用ticker
Ticker ticker; //for enc
-R1370P gyro(PC_6,PC_7); //ジャイロ
+//R1370P gyro(PC_6,PC_7); //ジャイロ
+R1370P gyro(p28,p27);
//DigitalOut can_led(LED1); //if can enable -> toggle
DigitalOut debug_led(LED2); //if debugmode -> on
@@ -61,8 +77,11 @@
//現在地X,y座標、現在角度については、PathFollowingでnow_x,now_y,now_angleを定義済
double start_x=0,start_y=0; //スタート位置
+double x_out,y_out,r_out;//出力値
+
static int16_t m1=0, m2=0, m3=0, m4=0; //int16bit = int2byte
+///////////////////////////////////////////////////関数のプロトタイプ宣言////////////////////////////////////////////////////
void UserLoopSetting(); // initialize setting
void DAC_Write(int16_t data, DigitalOut* DAC_cs);
void MotorControl(int16_t val_md1, int16_t val_md2, int16_t val_md3, int16_t val_md4);
@@ -85,10 +104,28 @@
//いろんな加算をしても最大OR最小が1になるような補正(?)//絶対値が一番でかいやつで除算//double Max(0~1)
//マクソンは-4095~4095だからMax=4095にする//最速スピードを出すための関数になってる
{
- if (fabs(FL)>=fabs(BL)&&fabs(FL)>=fabs(BR)&&fabs(FL)>=fabs(FR))output(Max ,Max*BL/fabs(FL),Max*BR/fabs(FL),Max*FR/fabs(FL));
- else if(fabs(BL)>=fabs(FL)&&fabs(BL)>=fabs(BR)&&fabs(BL)>=fabs(FR))output(Max*FL/fabs(BL),Max ,Max*BR/fabs(BL),Max*FR/fabs(BL));
- else if(fabs(BR)>=fabs(FL)&&fabs(BR)>=fabs(BL)&&fabs(BR)>=fabs(FR))output(Max*FL/fabs(BR),Max*BL/fabs(BR),Max ,Max*FR/fabs(BR));
- else output(Max*FL/fabs(FR),Max*BL/fabs(FR),Max*BR/fabs(FR),Max );
+ if (fabs(FL)>=fabs(BL)&&fabs(FL)>=fabs(BR)&&fabs(FL)>=fabs(FR))output(Max*FL/fabs(FL),Max*BL/fabs(FL),Max*BR/fabs(FL),Max*FR/fabs(FL));
+ else if(fabs(BL)>=fabs(FL)&&fabs(BL)>=fabs(BR)&&fabs(BL)>=fabs(FR))output(Max*FL/fabs(BL),Max*BL/fabs(BL),Max*BR/fabs(BL),Max*FR/fabs(BL));
+ else if(fabs(BR)>=fabs(FL)&&fabs(BR)>=fabs(BL)&&fabs(BR)>=fabs(FR))output(Max*FL/fabs(BR),Max*BL/fabs(BR),Max*BR/fabs(BR),Max*FR/fabs(BR));
+ else output(Max*FL/fabs(FR),Max*BL/fabs(FR),Max*BR/fabs(FR),Max*FR/fabs(FR));
+}
+
+void calc_xy()
+{
+ now_angle=gyro.getAngle(); //ジャイロの値読み込み
+
+ new_dist1=EC1.getDistance_mm();
+ new_dist2=EC2.getDistance_mm();
+ d_dist1=new_dist1-old_dist1;
+ d_dist2=new_dist2-old_dist2;
+ old_dist1=new_dist1;
+ old_dist2=new_dist2; //微小時間当たりのエンコーダ読み込み
+
+ d_x=d_dist2*sin(now_angle*PI/180)-d_dist1*cos(now_angle*PI/180);
+ d_y=d_dist2*cos(now_angle*PI/180)+d_dist1*sin(now_angle*PI/180); //微小時間毎の座標変化
+ now_x=now_x+d_x;
+ now_y=now_y-d_y; //微小時間毎に座標に加算
+
}
//ここからそれぞれのプログラム//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
@@ -103,7 +140,7 @@
//X=円弧の中心座標、Y=円弧の中心座標、r=円弧の半径、theta=plotの間隔(0~90°)、v=目標速度
int s;
- int t = 4;
+ int t = 0;
double plotx[(90/theta)+1]; //円弧にとるplotのx座標
double ploty[(90/theta)+1];
//double plotvx[(90/theta)+1]; //各plotにおける速度
@@ -115,43 +152,33 @@
case 1://↑から→
for(s=0; s<((90/theta)+1); s++) {
- plotx[s] = X + r * cos(PI - s * (PI*theta/180)) + r;
+ plotx[s] = X + r * cos(PI - s * (PI*theta/180));
ploty[s] = Y + r * sin(PI - s * (PI*theta/180));
//plotvx[s] = -v * cos(PI - s * (PI*theta/180));
//plotvy[s] = v * sin(PI - s * (PI*theta/180));
- //printf("plotx[%d]=%f ploty[%d]=%f\n\r",s,plotx[s],s,ploty[s]);
+ //debug_printf("plotx[%d]=%f ploty[%d]=%f\n\r",s,plotx[s],s,ploty[s]);
}
while(1) {
now_angle=gyro.getAngle(); //ジャイロの値読み込み
- new_dist1=EC1.getDistance_mm();
- new_dist2=EC2.getDistance_mm();
- d_dist1=new_dist1-old_dist1;
- d_dist2=new_dist2-old_dist2;
- old_dist1=new_dist1;
- old_dist2=new_dist2; //微小時間当たりのエンコーダ読み込み
-
- d_x=d_dist2*sin(now_angle*PI/180)-d_dist1*cos(now_angle*PI/180);
- d_y=d_dist2*cos(now_angle*PI/180)+d_dist1*sin(now_angle*PI/180); //微小時間毎の座標変化
- now_x=now_x+d_x;
- now_y=now_y+d_y; //微小時間毎に座標に加算
+ calc_xy();
XYRmotorout(plotx[t],ploty[t],plotx[t+1],ploty[t+1],&x_out,&y_out,&r_out);
CalMotorOut(x_out,y_out,r_out); //move4wheel内のモーター番号定義または成分分解が違うかも?
//CalMotorOut(plotvx[t], plotvy[t],0);
- //printf("t=%d x_out=%f y_out=%f\n\r",t,x_out,y_out);
- printf("t=%d (0)=%f (1)=%f (2)=%f (3)=%f\n\r",t,GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3));
+ //debug_printf("t=%d now_x=%f now_y=%f x_out=%f y_out=%f\n\r",t,now_x,now_y,x_out,y_out);
+ //debug_printf("t=%d (0)=%f (1)=%f (2)=%f (3)=%f\n\r",t,GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3));
- output(GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3)); //m1~m4に代入
+ base(GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3),1000); //m1~m4に代入
- if(((X - now_x)*(plotx[t+1] - plotx[t]) + (Y - now_y)*(ploty[t+1] - ploty[t])) < 0)t++;
+ if(((plotx[t+1] - now_x)*(plotx[t+1] - plotx[t]) + (ploty[t+1] - now_y)*(ploty[t+1] - ploty[t])) < 0)t++;
if(t == (90/theta))break;
MotorControl(m1,m2,m3,m4); //出力
- //printf("m1=%d m2=%d m3=%d m4=%d x=%f y=%f\n\r",m1,m2,m3,m4,now_x,now_y);
+ debug_printf("t=%d m1=%d m2=%d m3=%d m4=%d x=%f y=%f, angle = %f\n\r",t,m1,m2,m3,m4,now_x,now_y,now_angle);
}
@@ -165,53 +192,105 @@
while(1) {
now_angle=gyro.getAngle(); //ジャイロの値読み込み
-
- new_dist1=EC1.getDistance_mm();
- new_dist2=EC2.getDistance_mm();
- d_dist1=new_dist1-old_dist1;
- d_dist2=new_dist2-old_dist2;
- old_dist1=new_dist1;
- old_dist2=new_dist2; //微小時間当たりのエンコーダ読み込み
-
- d_x=d_dist2*sin(now_angle*PI/180)-d_dist1*cos(now_angle*PI/180);
- d_y=d_dist2*cos(now_angle*PI/180)+d_dist1*sin(now_angle*PI/180); //微小時間毎の座標変化
- now_x=now_x+d_x;
- now_y=now_y+d_y; //微小時間毎に座標に加算
+
+ calc_xy();
XYRmotorout(plotx[t],ploty[t],plotx[t+1],ploty[t+1],&x_out,&y_out,&r_out);
CalMotorOut(x_out,y_out,r_out);
- base(GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3),4095);
- if(((X - now_x)*(plotx[t+1] - plotx[t]) + (Y - now_y)*(ploty[t+1] - ploty[t])) < 0)t++;
+ base(GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3),1000);
+ if(((plotx[t+1] - now_x)*(plotx[t+1] - plotx[t]) + (ploty[t+1] - now_y)*(ploty[t+1] - ploty[t])) < 0)t++;
if(t == (90/theta))break;
+ MotorControl(m1,m2,m3,m4);
}
}
}
-//ここまで///////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
+
+void gogo_straight(double x1_point,double y1_point,double x2_point,double y2_point)//直線運動プログラム(引数:出発地点の座標(x,y)、目標地点の座標(x,y))
+{
+ while (1) {
+
+ //now_angle=gyro.getAngle();
+
+ calc_xy();
+ printf("x = %f, y = %f, angle = %f\r\n",now_x,now_y,now_angle);
+
+
+ //Debug_Control();
+ XYRmotorout(x1_point,y1_point,x2_point,y2_point,&x_out,&y_out,&r_out);
+ //printf("x=%lf, y=%lf, r=%lf",x_out, y_out,r_out);
+
+ CalMotorOut(x_out,y_out,r_out);
+ //printf("out1=%lf, out2=%lf, out3=%lf, out4=%lf\n",GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3));
+
+ base(GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3),1000);
+ //printf("m1=%d, m2=%d, m3=%d, m4=%d\r\n",m1,m2,m3,m4);
+ MotorControl(m1,m2,m3,m4);
+
+
+
+ if(((x2_point - now_x)*(x2_point - x1_point) + (y2_point - now_y)*(y2_point - y1_point)) < 0) break;
+
+ }
+
+ MotorControl(0,0,0,0);
+}
+
+void go_straight(int type,double goal_x,double goal_y,double speed,double front)//移動パターン(1,2,3,4)、目標X、目標Y、最高速度(0~1)、正面角度
+{
+ double y_hosei=(now_y-goal_y)*0.001;//Y座標(mm単位)にP処理
+ double x_hosei=(now_x-goal_x)*0.001;//X座標(mm単位)にP処理
+ double incl_hosei=sin(now_angle-front)*(PI/180)*0.1;//機体角度(sin(数度→ラジアンに変換))にP処理
+
+ switch(type) {
+ case 1://Y座標一定の正方向横移動
+ while(now_x<goal_x){
+ base(-1-y_hosei-incl_hosei,-1+y_hosei-incl_hosei,1+y_hosei-incl_hosei,1-y_hosei-incl_hosei,speed);
+ }
+ break;
+
+ case 2://Y座標一定の負方向横移動
+ while(now_x>goal_x){
+ base(1-y_hosei-incl_hosei,1+y_hosei-incl_hosei,-1+y_hosei-incl_hosei,-1-y_hosei-incl_hosei,speed);
+ }
+ break;
+
+ case 3://Y座標一定の正方向横移動
+ while(now_y<goal_y){
+ base(1+x_hosei-incl_hosei,-1+x_hosei-incl_hosei,-1-x_hosei-incl_hosei,1-x_hosei-incl_hosei,speed);
+ }
+ break;
+
+ case 4://X座標一定の負方向横移動
+ while(now_y>goal_y){
+ base(-1+x_hosei-incl_hosei,1+x_hosei-incl_hosei,1-x_hosei-incl_hosei,-1-x_hosei-incl_hosei,speed);
+ }
+ break;
+ }
+}
+
+//////////////////////////////////////////////////////////////以下main文////////////////////////////////////////////////////////////////////////
int main()
{
UserLoopSetting();
- /*void reset();
+ void reset();
EC1.reset();
- EC2.reset();*/
+ EC2.reset();
now_x=start_x;
now_y=start_y;
-
- //m1, m2, m3, m4 に出力を代入すればとりあえず動く
-
- purecurve(1,0,0,1000,9,1000);
-
- /*while(1) {
+
+
+ // purecurve(1,1000,0,1000,9,1000);
+ // MotorControl(0,0,0,0);
+
+
+ //gogo_straight(0,0,1500,0);
- //Debug_Control();
-
- //MotorControl(m1,m2,m3,m4);
-
- }*/
}
+///////////////////////////////////////////////////////////////////////以下マクソン関連///////////////////////////////////////////////////////////////////////////
void UserLoopSetting()
{
@@ -232,11 +311,11 @@
EC1.setDiameter_mm(48);
EC2.setDiameter_mm(48); //測定輪半径
//-----PathFollowingのパラメーター設定-----//
- set_p_out(1000); //ベクトルABに平行方向の出力値設定関数(カーブを曲がる速度)
- q_setPDparam(30,30); //ベクトルABに垂直な方向の誤差を埋めるPD制御のパラメータ設定関数
- r_setPDparam(30,30); //機体角度と目標角度の誤差を埋めるPD制御のパラメータ設定関数
- set_r_out(1000); //旋回時の最大出力値設定関数
- set_target_angle(0); //機体目標角度設定関数
+ set_p_out(800); //ベクトルABに平行方向の出力値設定関数(カーブを曲がる速度)
+ q_setPDparam(0.1,0.1); //ベクトルABに垂直な方向の誤差を埋めるPD制御のパラメータ設定関数
+ r_setPDparam(10,0.1); //機体角度と目標角度の誤差を埋めるPD制御のパラメータ設定関数
+ set_r_out(500); //旋回時の最大出力値設定関数
+ // set_target_angle(0); //機体目標角度設定関数
#ifdef DEBUG_MODE
debug_led = 1;
--- a/move4wheel.lib Sat Nov 17 05:35:23 2018 +0000 +++ b/move4wheel.lib Sat Nov 24 14:45:01 2018 +0000 @@ -1,1 +1,1 @@ -https://os.mbed.com/teams/F3RC4/code/move4wheel2/#ae8974b90ca7 +https://os.mbed.com/teams/F3RC4/code/move4wheel2/#8da9e67ac000