Important changes to repositories hosted on mbed.com
Mbed hosted mercurial repositories are deprecated and are due to be permanently deleted in July 2026.
To keep a copy of this software download the repository Zip archive or clone locally using Mercurial.
It is also possible to export all your personal repositories from the account settings page.
Dependencies: mbed EC PathFollowing-ver11 CruizCore_R1370P
main.cpp
- Committer:
- yuki0701
- Date:
- 2018-11-24
- Revision:
- 3:e696a6dd4254
- Parent:
- 2:e04e6b5d6584
- Child:
- 5:7493649d098b
File content as of revision 3:e696a6dd4254:
#include "mbed.h"
#include "EC.h"
#include "R1370P.h"
#include "move4wheel.h"
#include "PathFollowing.h"
#include <stdarg.h>
#define PI 3.141592
#define DEBUG_MODE // compile as debug mode (comment out if you don't use)
#ifdef DEBUG_MODE
#define DEBUG_PRINT // enable debug_printf
#endif
Serial pc(USBTX,USBRX);
void debug_printf(const char* format,...); // work as printf in debug
void Debug_Control(); // control by PC keybord
#define SPI_FREQ 1000000 // 1MHz
#define SPI_BITS 16
#define SPI_MODE 0
#define SPI_WAIT_US 1 // 1us
//SPI spi(PB_5,PB_4,PB_3); //Nucleo
SPI spi(p5,p6,p7); //mbed
/*DigitalOut ss_md1(PB_15); //エスコンの設定
DigitalOut ss_md2(PB_14);
DigitalOut ss_md3(PB_13);
DigitalOut ss_md4(PC_4);
DigitalOut md_enable(PA_13); // do all motor driver enable
//DigitalIn md_ch_enable(p10); // check enable switch is open or close
//Timer md_disable;
DigitalOut md_stop(PA_14); // stop all motor
DigitalIn md_check(PB_7); // check error of all motor driver //とりあえず使わない*/
DigitalOut ss_md1(p15); //エスコンの設定
DigitalOut ss_md2(p16);
DigitalOut ss_md3(p17);
DigitalOut ss_md4(p18);
DigitalOut md_enable(p25);
//Timer md_disable;
DigitalOut md_stop(p24); // stop all motor
DigitalIn md_check(p23); // check error of all motor driver //とりあえず使わない
/*モーターの配置
* md1//---F---\\md4
* | |
* L + R
* | |
* md2\\---B---//md3
*/
//Ec EC1(PC_6,PC_8,NC,500,0.05);
//Ec EC2(PB_1,PB_12,NC,500,0.05); //Nucleo
Ec EC1(p21,p22,NC,500,0.05);
Ec EC2(p8,p26,NC,500,0.05); //←mbad
Ticker motor_tick; //角速度計算用ticker
Ticker ticker; //for enc
//R1370P gyro(PC_6,PC_7); //ジャイロ
R1370P gyro(p28,p27);
//DigitalOut can_led(LED1); //if can enable -> toggle
DigitalOut debug_led(LED2); //if debugmode -> on
DigitalOut md_stop_led(LED3); //if motor stop -> on
DigitalOut md_err_led(LED4); //if driver error -> on //とりあえず使わない
double new_dist1=0,new_dist2=0;
double old_dist1=0,old_dist2=0;
double d_dist1=0,d_dist2=0; //座標計算用関数
double d_x,d_y;
//現在地X,y座標、現在角度については、PathFollowingでnow_x,now_y,now_angleを定義済
double start_x=0,start_y=0; //スタート位置
double x_out,y_out,r_out;//出力値
static int16_t m1=0, m2=0, m3=0, m4=0; //int16bit = int2byte
///////////////////////////////////////////////////関数のプロトタイプ宣言////////////////////////////////////////////////////
void UserLoopSetting(); // initialize setting
void DAC_Write(int16_t data, DigitalOut* DAC_cs);
void MotorControl(int16_t val_md1, int16_t val_md2, int16_t val_md3, int16_t val_md4);
void calOmega() //角速度計算関数
{
EC1.CalOmega();
EC2.CalOmega();
}
void output(double FL,double BL,double BR,double FR)
{
m1=FL;
m2=BL;
m3=BR;
m4=FR;
}
void base(double FL,double BL,double BR,double FR,double Max)
//いろんな加算をしても最大OR最小が1になるような補正(?)//絶対値が一番でかいやつで除算//double Max(0~1)
//マクソンは-4095~4095だからMax=4095にする//最速スピードを出すための関数になってる
{
if (fabs(FL)>=fabs(BL)&&fabs(FL)>=fabs(BR)&&fabs(FL)>=fabs(FR))output(Max*FL/fabs(FL),Max*BL/fabs(FL),Max*BR/fabs(FL),Max*FR/fabs(FL));
else if(fabs(BL)>=fabs(FL)&&fabs(BL)>=fabs(BR)&&fabs(BL)>=fabs(FR))output(Max*FL/fabs(BL),Max*BL/fabs(BL),Max*BR/fabs(BL),Max*FR/fabs(BL));
else if(fabs(BR)>=fabs(FL)&&fabs(BR)>=fabs(BL)&&fabs(BR)>=fabs(FR))output(Max*FL/fabs(BR),Max*BL/fabs(BR),Max*BR/fabs(BR),Max*FR/fabs(BR));
else output(Max*FL/fabs(FR),Max*BL/fabs(FR),Max*BR/fabs(FR),Max*FR/fabs(FR));
}
void calc_xy()
{
now_angle=gyro.getAngle(); //ジャイロの値読み込み
new_dist1=EC1.getDistance_mm();
new_dist2=EC2.getDistance_mm();
d_dist1=new_dist1-old_dist1;
d_dist2=new_dist2-old_dist2;
old_dist1=new_dist1;
old_dist2=new_dist2; //微小時間当たりのエンコーダ読み込み
d_x=d_dist2*sin(now_angle*PI/180)-d_dist1*cos(now_angle*PI/180);
d_y=d_dist2*cos(now_angle*PI/180)+d_dist1*sin(now_angle*PI/180); //微小時間毎の座標変化
now_x=now_x+d_x;
now_y=now_y-d_y; //微小時間毎に座標に加算
}
//ここからそれぞれのプログラム//////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////////
//now_x(現在のx座標),now_y(現在のy座標),now_angle(機体角度(ラジアンではない)(0~360や-180~180とは限らない))(反時計回りが正)
//ジャイロの出力は角度だが三角関数はラジアンとして計算する
//通常の移動+座標のずれ補正+機体の角度補正(+必要に応じさらに別補正)
//ジャイロの仕様上、角度補正をするときに計算式内で角度はそのままよりsinをとったほうがいいかもね
void purecurve(int type,double X,double Y,double r,int theta,double speed/*,double v*/)
{
//正面を変えずに円弧を描いて90°曲がる
//X=円弧の中心座標、Y=円弧の中心座標、r=円弧の半径、theta=plotの間隔(0~90°)、v=目標速度
int s;
int t = 0;
double plotx[(90/theta)+1]; //円弧にとるplotのx座標
double ploty[(90/theta)+1];
//double plotvx[(90/theta)+1]; //各plotにおける速度
//double plotvy[(90/theta)+1];
double x_out,y_out,r_out;
switch(type) {
case 1://↑から→
for(s=0; s<((90/theta)+1); s++) {
plotx[s] = X + r * cos(PI - s * (PI*theta/180));
ploty[s] = Y + r * sin(PI - s * (PI*theta/180));
//plotvx[s] = -v * cos(PI - s * (PI*theta/180));
//plotvy[s] = v * sin(PI - s * (PI*theta/180));
//debug_printf("plotx[%d]=%f ploty[%d]=%f\n\r",s,plotx[s],s,ploty[s]);
}
while(1) {
now_angle=gyro.getAngle(); //ジャイロの値読み込み
calc_xy();
XYRmotorout(plotx[t],ploty[t],plotx[t+1],ploty[t+1],&x_out,&y_out,&r_out);
CalMotorOut(x_out,y_out,r_out); //move4wheel内のモーター番号定義または成分分解が違うかも?
//CalMotorOut(plotvx[t], plotvy[t],0);
//debug_printf("t=%d now_x=%f now_y=%f x_out=%f y_out=%f\n\r",t,now_x,now_y,x_out,y_out);
//debug_printf("t=%d (0)=%f (1)=%f (2)=%f (3)=%f\n\r",t,GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3));
base(GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3),1000); //m1~m4に代入
if(((plotx[t+1] - now_x)*(plotx[t+1] - plotx[t]) + (ploty[t+1] - now_y)*(ploty[t+1] - ploty[t])) < 0)t++;
if(t == (90/theta))break;
MotorControl(m1,m2,m3,m4); //出力
debug_printf("t=%d m1=%d m2=%d m3=%d m4=%d x=%f y=%f, angle = %f\n\r",t,m1,m2,m3,m4,now_x,now_y,now_angle);
}
case 2://↑から← //まだ編集してない
for(s=0; s<((90/theta)+1); s++) {
plotx[s] = X + r * cos(s * (PI*theta/180));
ploty[s] = Y + r * sin(s * (PI*theta/180));
}
while(1) {
now_angle=gyro.getAngle(); //ジャイロの値読み込み
calc_xy();
XYRmotorout(plotx[t],ploty[t],plotx[t+1],ploty[t+1],&x_out,&y_out,&r_out);
CalMotorOut(x_out,y_out,r_out);
base(GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3),1000);
if(((plotx[t+1] - now_x)*(plotx[t+1] - plotx[t]) + (ploty[t+1] - now_y)*(ploty[t+1] - ploty[t])) < 0)t++;
if(t == (90/theta))break;
MotorControl(m1,m2,m3,m4);
}
}
}
void gogo_straight(double x1_point,double y1_point,double x2_point,double y2_point)//直線運動プログラム(引数:出発地点の座標(x,y)、目標地点の座標(x,y))
{
while (1) {
//now_angle=gyro.getAngle();
calc_xy();
printf("x = %f, y = %f, angle = %f\r\n",now_x,now_y,now_angle);
//Debug_Control();
XYRmotorout(x1_point,y1_point,x2_point,y2_point,&x_out,&y_out,&r_out);
//printf("x=%lf, y=%lf, r=%lf",x_out, y_out,r_out);
CalMotorOut(x_out,y_out,r_out);
//printf("out1=%lf, out2=%lf, out3=%lf, out4=%lf\n",GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3));
base(GetMotorOut(0),GetMotorOut(1),GetMotorOut(2),GetMotorOut(3),1000);
//printf("m1=%d, m2=%d, m3=%d, m4=%d\r\n",m1,m2,m3,m4);
MotorControl(m1,m2,m3,m4);
if(((x2_point - now_x)*(x2_point - x1_point) + (y2_point - now_y)*(y2_point - y1_point)) < 0) break;
}
MotorControl(0,0,0,0);
}
void go_straight(int type,double goal_x,double goal_y,double speed,double front)//移動パターン(1,2,3,4)、目標X、目標Y、最高速度(0~1)、正面角度
{
double y_hosei=(now_y-goal_y)*0.001;//Y座標(mm単位)にP処理
double x_hosei=(now_x-goal_x)*0.001;//X座標(mm単位)にP処理
double incl_hosei=sin(now_angle-front)*(PI/180)*0.1;//機体角度(sin(数度→ラジアンに変換))にP処理
switch(type) {
case 1://Y座標一定の正方向横移動
while(now_x<goal_x){
base(-1-y_hosei-incl_hosei,-1+y_hosei-incl_hosei,1+y_hosei-incl_hosei,1-y_hosei-incl_hosei,speed);
}
break;
case 2://Y座標一定の負方向横移動
while(now_x>goal_x){
base(1-y_hosei-incl_hosei,1+y_hosei-incl_hosei,-1+y_hosei-incl_hosei,-1-y_hosei-incl_hosei,speed);
}
break;
case 3://Y座標一定の正方向横移動
while(now_y<goal_y){
base(1+x_hosei-incl_hosei,-1+x_hosei-incl_hosei,-1-x_hosei-incl_hosei,1-x_hosei-incl_hosei,speed);
}
break;
case 4://X座標一定の負方向横移動
while(now_y>goal_y){
base(-1+x_hosei-incl_hosei,1+x_hosei-incl_hosei,1-x_hosei-incl_hosei,-1-x_hosei-incl_hosei,speed);
}
break;
}
}
//////////////////////////////////////////////////////////////以下main文////////////////////////////////////////////////////////////////////////
int main()
{
UserLoopSetting();
void reset();
EC1.reset();
EC2.reset();
now_x=start_x;
now_y=start_y;
// purecurve(1,1000,0,1000,9,1000);
// MotorControl(0,0,0,0);
//gogo_straight(0,0,1500,0);
}
///////////////////////////////////////////////////////////////////////以下マクソン関連///////////////////////////////////////////////////////////////////////////
void UserLoopSetting()
{
//-----エスコンの初期設定-----//
spi.format(SPI_BITS, SPI_MODE);
spi.frequency(SPI_FREQ);
ss_md1 = 1;
ss_md2 = 1;
ss_md3 = 1;
ss_md4 = 1;
md_enable = 1; //enable on
md_err_led = 0;
md_stop = 1;
md_stop_led = 1;
//-----センサーの初期設定-----//
gyro.initialize();
motor_tick.attach(&calOmega,0.05); //0.05秒間隔で角速度を計算
EC1.setDiameter_mm(48);
EC2.setDiameter_mm(48); //測定輪半径
//-----PathFollowingのパラメーター設定-----//
set_p_out(800); //ベクトルABに平行方向の出力値設定関数(カーブを曲がる速度)
q_setPDparam(0.1,0.1); //ベクトルABに垂直な方向の誤差を埋めるPD制御のパラメータ設定関数
r_setPDparam(10,0.1); //機体角度と目標角度の誤差を埋めるPD制御のパラメータ設定関数
set_r_out(500); //旋回時の最大出力値設定関数
// set_target_angle(0); //機体目標角度設定関数
#ifdef DEBUG_MODE
debug_led = 1;
pc.attach(Debug_Control, Serial::RxIrq);
#else
debug_led = 0;
#endif
}
#define MCP4922_AB (1<<15)
#define MCP4922_BUF (1<<14)
#define MCP4922_GA (1<<13)
#define MCP4922_SHDN (1<<12)
#define MCP4922_SET_OUTA (0x3000) //( MCP4922_GA || MCP4922_SHDN ) //12288
#define MCP4922_SET_OUTB (0xB000) //( MCP4922_AB || MCP4922_GA || MCP4922_SHDN ) //45056
#define MCP4922_MASKSET (0x0FFF) //4095
void DAC_Write(int16_t data, DigitalOut* DAC_cs) //(出力,出力場所)
{
static uint16_t dataA; //送るデータ
static uint16_t dataB;
dataA = MCP4922_SET_OUTA;
dataB = MCP4922_SET_OUTB;
if(data >= 0) {
if(data > 4095) {
data = 4095;
}
dataA += (MCP4922_MASKSET & (uint16_t)(data));
} else {
if(data < -4095) {
data = -4095;
}
dataB += (MCP4922_MASKSET & (uint16_t)(-data));
}
//Aの出力設定
(DigitalOut)(*DAC_cs)=0;
wait_us(SPI_WAIT_US);
spi.write(dataA);
wait_us(SPI_WAIT_US);
(DigitalOut)(*DAC_cs)=1;
wait_us(SPI_WAIT_US);
//Bの出力設定
(DigitalOut)(*DAC_cs)=0;
wait_us(SPI_WAIT_US);
spi.write(dataB);
wait_us(SPI_WAIT_US);
(DigitalOut)(*DAC_cs)=1;
}
void MotorControl(int16_t val_md1, int16_t val_md2, int16_t val_md3, int16_t val_md4) //出力
{
static int16_t zero_check;
DAC_Write(val_md1, &ss_md1);
DAC_Write(val_md2, &ss_md2);
DAC_Write(val_md3, &ss_md3);
DAC_Write(val_md4, &ss_md4);
zero_check = (val_md1 | val_md2 | val_md3 | val_md4); //すべての出力が0なら強制停止
if(zero_check == 0) {
md_stop = 1;
md_stop_led = 1;
} else {
md_stop = 0;
md_stop_led = 0;
}
}
#ifdef DEBUG_MODE
void Debug_Control()
{
static char pc_command = '\0';
pc_command = pc.getc();
if(pc_command == 'w') { //前進
m1+=500;
m2+=500;
m3-=500;
m4-=500;
} else if(pc_command == 's') { //後進
m1-=500;
m2-=500;
m3+=500;
m4+=500;
} else if(pc_command == 'd') { //右回り
m1+=500;
m2+=500;
m3+=500;
m4+=500;
} else if(pc_command == 'a') { //左回り
m1-=500;
m2-=500;
m3-=500;
m4-=500;
} else {
m1=0;
m2=0;
m3=0;
m4=0;
}
if(m1>4095) { //最大値を超えないように
m1=4095;
} else if(m1<-4095) {
m1=-4095;
}
if(m2>4095) {
m2=4095;
} else if(m2<-4095) {
m2=-4095;
}
if(m3>4095) {
m3=4095;
} else if(m3<-4095) {
m3=-4095;
}
if(m4>4095) {
m4=4095;
} else if(m4<-4095) {
m4=-4095;
}
debug_printf("%d %d %d %d\r\n",m1,m2,m3,m4);
MotorControl(m1,m2,m3,m4);
pc_command = '\0';
}
#endif
#ifdef DEBUG_PRINT
void debug_printf(const char* format,...)
{
va_list arg;
va_start(arg, format);
vprintf(format, arg);
va_end(arg);
}
#endif