USBDevice with Nucleo 32L476RG support
Dependents: ObCP_ENSMM_V2020_Test_Accelero
targets/TARGET_Maxim/USBHAL_Maxim.cpp
- Committer:
- jimbaud
- Date:
- 2020-09-30
- Revision:
- 72:14a22343c610
- Parent:
- 71:53949e6131f6
File content as of revision 72:14a22343c610:
/******************************************************************************* * Copyright (C) 2016 Maxim Integrated Products, Inc., All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included * in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. * IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES * OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR * OTHER DEALINGS IN THE SOFTWARE. * * Except as contained in this notice, the name of Maxim Integrated * Products, Inc. shall not be used except as stated in the Maxim Integrated * Products, Inc. Branding Policy. * * The mere transfer of this software does not imply any licenses * of trade secrets, proprietary technology, copyrights, patents, * trademarks, maskwork rights, or any other form of intellectual * property whatsoever. Maxim Integrated Products, Inc. retains all * ownership rights. ******************************************************************************* */ #if defined(TARGET_Maxim) #include "USBHAL.h" #include "usb_regs.h" #include "clkman_regs.h" #if defined(TARGET_MAX32625) || defined(TARGET_MAX32630) #include "pwrman_regs.h" #endif #define CONNECT_INTS (MXC_F_USB_DEV_INTEN_BRST | MXC_F_USB_DEV_INTEN_SETUP | MXC_F_USB_DEV_INTEN_EP_IN | MXC_F_USB_DEV_INTEN_EP_OUT | MXC_F_USB_DEV_INTEN_DMA_ERR) USBHAL *USBHAL::instance; typedef struct { volatile uint32_t buf0_desc; volatile uint32_t buf0_address; volatile uint32_t buf1_desc; volatile uint32_t buf1_address; } ep_buffer_t; typedef struct { ep_buffer_t out_buffer; ep_buffer_t in_buffer; } ep0_buffer_t; typedef struct { ep0_buffer_t ep0; ep_buffer_t ep[MXC_USB_NUM_EP - 1]; } ep_buffer_descriptor_t; // Static storage for endpoint buffer descriptor table. Must be 512 byte aligned for DMA. #ifdef __IAR_SYSTEMS_ICC__ #pragma data_alignment = 512 #else __attribute__ ((aligned (512))) #endif ep_buffer_descriptor_t ep_buffer_descriptor; // static storage for temporary data buffers. Must be 32 byte aligned. #ifdef __IAR_SYSTEMS_ICC__ #pragma data_alignment = 4 #else __attribute__ ((aligned (4))) #endif static uint8_t aligned_buffer[NUMBER_OF_LOGICAL_ENDPOINTS][MXC_USB_MAX_PACKET]; // control packet state static enum { CTRL_NONE = 0, CTRL_SETUP, CTRL_OUT, CTRL_IN, } control_state; USBHAL::USBHAL(void) { NVIC_DisableIRQ(USB_IRQn); #if defined(TARGET_MAX32600) // The PLL must be enabled for USB MBED_ASSERT(MXC_CLKMAN->clk_config & MXC_F_CLKMAN_CLK_CONFIG_PLL_ENABLE); // Enable the USB clock MXC_CLKMAN->clk_ctrl |= MXC_F_CLKMAN_CLK_CTRL_USB_GATE_N; #elif defined(TARGET_MAX32620) // Enable the USB clock MXC_CLKMAN->clk_ctrl |= MXC_F_CLKMAN_CLK_CTRL_USB_CLOCK_ENABLE; #endif // reset the device MXC_USB->cn = 0; MXC_USB->cn = MXC_F_USB_CN_USB_EN; MXC_USB->dev_inten = 0; MXC_USB->dev_cn = 0; MXC_USB->dev_cn = MXC_F_USB_DEV_CN_URST; MXC_USB->dev_cn = 0; // fill in callback arrays epCallback[EP0OUT] = NULL; epCallback[EP0IN] = NULL; epCallback[EP1OUT] = &USBHAL::EP1_OUT_callback; epCallback[EP1IN ] = &USBHAL::EP1_IN_callback; epCallback[EP2OUT] = &USBHAL::EP2_OUT_callback; epCallback[EP2IN ] = &USBHAL::EP2_IN_callback; epCallback[EP3OUT] = &USBHAL::EP3_OUT_callback; epCallback[EP3IN ] = &USBHAL::EP3_IN_callback; epCallback[EP4OUT] = &USBHAL::EP4_OUT_callback; epCallback[EP4IN ] = &USBHAL::EP4_IN_callback; epCallback[EP5OUT] = &USBHAL::EP5_OUT_callback; epCallback[EP5IN ] = &USBHAL::EP5_IN_callback; epCallback[EP6OUT] = &USBHAL::EP6_OUT_callback; epCallback[EP6IN ] = &USBHAL::EP6_IN_callback; epCallback[EP7OUT] = &USBHAL::EP7_OUT_callback; epCallback[EP7IN ] = &USBHAL::EP7_IN_callback; // clear driver state control_state = CTRL_NONE; // set the descriptor location MXC_USB->ep_base = (uint32_t)&ep_buffer_descriptor; // enable VBUS interrupts MXC_USB->dev_inten = MXC_F_USB_DEV_INTEN_NO_VBUS | MXC_F_USB_DEV_INTEN_VBUS; // attach IRQ handler and enable interrupts instance = this; NVIC_SetVector(USB_IRQn, &_usbisr); NVIC_EnableIRQ(USB_IRQn); } USBHAL::~USBHAL(void) { MXC_USB->dev_cn = MXC_F_USB_DEV_CN_URST; MXC_USB->dev_cn = 0; MXC_USB->cn = 0; } void USBHAL::connect(void) { // enable interrupts MXC_USB->dev_inten |= CONNECT_INTS; // allow interrupts on ep0 MXC_USB->ep[0] |= MXC_F_USB_EP_INT_EN; // pullup enable MXC_USB->dev_cn |= (MXC_F_USB_DEV_CN_CONNECT | MXC_F_USB_DEV_CN_FIFO_MODE); } void USBHAL::disconnect(void) { // disable interrupts MXC_USB->dev_inten &= ~CONNECT_INTS; // disable pullup MXC_USB->dev_cn &= ~MXC_F_USB_DEV_CN_CONNECT; } void USBHAL::configureDevice(void) { // do nothing } void USBHAL::unconfigureDevice(void) { // reset endpoints for (int i = 0; i < MXC_USB_NUM_EP; i++) { // Disable endpoint and clear the data toggle MXC_USB->ep[i] &= ~MXC_F_USB_EP_DIR; MXC_USB->ep[i] |= MXC_F_USB_EP_DT; } } void USBHAL::setAddress(uint8_t address) { // do nothing } void USBHAL::remoteWakeup(void) { // do nothing } static ep_buffer_t *get_desc(uint8_t endpoint) { uint8_t epnum = EP_NUM(endpoint); ep_buffer_t *desc; if (epnum == 0) { if (IN_EP(endpoint)) { desc = &ep_buffer_descriptor.ep0.in_buffer; } else { desc = &ep_buffer_descriptor.ep0.out_buffer; } } else { desc = &ep_buffer_descriptor.ep[epnum - 1]; } return desc; } void USBHAL::EP0setup(uint8_t *buffer) { // Setup packet is fixed at 8 bytes // Setup registers cannot be read in byte mode uint32_t *ptr32 = (uint32_t*)buffer; ptr32[0] = (uint32_t)MXC_USB->setup0; ptr32[1] = (uint32_t)MXC_USB->setup1; } void USBHAL::EP0read(void) { if (control_state == CTRL_IN) { // This is the status stage. ACK. MXC_USB->ep[0] |= MXC_F_USB_EP_ST_ACK; control_state = CTRL_NONE; return; } control_state = CTRL_OUT; endpointRead(EP0OUT, MAX_PACKET_SIZE_EP0); } void USBHAL::EP0readStage(void) { // do nothing } uint32_t USBHAL::EP0getReadResult(uint8_t *buffer) { uint32_t size; if (MXC_USB->out_owner & 1) { return 0; } // get the packet length and contents ep_buffer_t *desc = get_desc(EP0OUT); size = desc->buf0_desc; memcpy(buffer, aligned_buffer[0], size); return size; } void USBHAL::EP0write(uint8_t *buffer, uint32_t size) { if ((size == 0) && (control_state != CTRL_IN)) { // This is a status stage ACK. Handle in hardware. MXC_USB->ep[0] |= MXC_F_USB_EP_ST_ACK; control_state = CTRL_NONE; return; } control_state = CTRL_IN; endpointWrite(EP0IN, buffer, size); } void USBHAL::EP0stall(void) { stallEndpoint(0); } EP_STATUS USBHAL::endpointRead(uint8_t endpoint, uint32_t maximumSize) { uint8_t epnum = EP_NUM(endpoint); if ((endpoint >= NUMBER_OF_PHYSICAL_ENDPOINTS) || IN_EP(endpoint)) { return EP_INVALID; } if (maximumSize > MXC_USB_MAX_PACKET) { return EP_INVALID; } uint32_t mask = (1 << epnum); if (MXC_USB->out_owner & mask) { return EP_INVALID; } ep_buffer_t *desc = get_desc(endpoint); desc->buf0_desc = maximumSize; desc->buf0_address = (uint32_t)aligned_buffer[epnum]; MXC_USB->out_owner = mask; return EP_PENDING; } EP_STATUS USBHAL::endpointReadResult(uint8_t endpoint, uint8_t *data, uint32_t *bytesRead) { if ((endpoint >= NUMBER_OF_PHYSICAL_ENDPOINTS) || IN_EP(endpoint)) { return EP_INVALID; } uint32_t mask = (1 << EP_NUM(endpoint)); if (MXC_USB->out_owner & mask) { return EP_PENDING; } // get the packet length and contents ep_buffer_t *desc = get_desc(endpoint); *bytesRead = desc->buf0_desc; memcpy(data, aligned_buffer[EP_NUM(endpoint)], *bytesRead); return EP_COMPLETED; } EP_STATUS USBHAL::endpointWrite(uint8_t endpoint, uint8_t *data, uint32_t size) { uint8_t epnum = EP_NUM(endpoint); if ((endpoint >= NUMBER_OF_PHYSICAL_ENDPOINTS) || OUT_EP(endpoint)) { return EP_INVALID; } if (size > MXC_USB_MAX_PACKET) { return EP_INVALID; } uint32_t mask = (1 << epnum); if (MXC_USB->in_owner & mask) { return EP_INVALID; } memcpy(aligned_buffer[epnum], data, size); ep_buffer_t *desc = get_desc(endpoint); desc->buf0_desc = size; desc->buf0_address = (uint32_t)aligned_buffer[epnum]; // start the DMA MXC_USB->in_owner = mask; return EP_PENDING; } EP_STATUS USBHAL::endpointWriteResult(uint8_t endpoint) { uint32_t mask = (1 << EP_NUM(endpoint)); if (MXC_USB->in_owner & mask) { return EP_PENDING; } return EP_COMPLETED; } void USBHAL::stallEndpoint(uint8_t endpoint) { uint8_t epnum = EP_NUM(endpoint); if (epnum == 0) { MXC_USB->ep[epnum] |= MXC_F_USB_EP_ST_STALL; } MXC_USB->ep[epnum] |= MXC_F_USB_EP_STALL; } void USBHAL::unstallEndpoint(uint8_t endpoint) { MXC_USB->ep[EP_NUM(endpoint)] &= ~MXC_F_USB_EP_STALL; } bool USBHAL::realiseEndpoint(uint8_t endpoint, uint32_t maxPacket, uint32_t options) { uint8_t epnum = EP_NUM(endpoint); uint32_t ep_ctrl; if (epnum >= NUMBER_OF_PHYSICAL_ENDPOINTS) { return false; } if (IN_EP(endpoint)) { ep_ctrl = (MXC_V_USB_EP_DIR_IN << MXC_F_USB_EP_DIR_POS); } else { ep_ctrl = (MXC_S_USB_EP_DIR_OUT << MXC_F_USB_EP_DIR_POS); } ep_ctrl |= (MXC_F_USB_EP_DT | MXC_F_USB_EP_INT_EN); MXC_USB->ep[epnum] = ep_ctrl; return true; } bool USBHAL::getEndpointStallState(unsigned char endpoint) { return !!(MXC_USB->ep[endpoint] & MXC_F_USB_EP_STALL); } void USBHAL::_usbisr(void) { instance->usbisr(); } void USBHAL::usbisr(void) { // get and clear irqs uint32_t irq_flags = MXC_USB->dev_intfl; MXC_USB->dev_intfl = irq_flags; // process only enabled interrupts irq_flags &= MXC_USB->dev_inten; // suspend if (irq_flags & MXC_F_USB_DEV_INTFL_SUSP) { suspendStateChanged(1); } // bus reset if (irq_flags & MXC_F_USB_DEV_INTFL_BRST) { // reset endpoints for (int i = 0; i < MXC_USB_NUM_EP; i++) { // Disable endpoint and clear the data toggle MXC_USB->ep[i] &= ~MXC_F_USB_EP_DIR; MXC_USB->ep[i] |= MXC_F_USB_EP_DT; } // clear driver state control_state = CTRL_NONE; busReset(); // no need to process events after reset return; } // Setup packet if (irq_flags & MXC_F_USB_DEV_INTFL_SETUP) { control_state = CTRL_SETUP; EP0setupCallback(); } // IN packets if (irq_flags & MXC_F_USB_DEV_INTFL_EP_IN) { // get and clear IN irqs uint32_t in_irqs = MXC_USB->in_int; MXC_USB->in_int = in_irqs; if (in_irqs & 1) { EP0in(); } for (uint8_t epnum = 1; epnum < NUMBER_OF_LOGICAL_ENDPOINTS; epnum++) { uint32_t irq_mask = (1 << epnum); if (in_irqs & irq_mask) { uint8_t endpoint = (epnum << 1) | DIR_IN; (instance->*(epCallback[endpoint]))(); } } } // OUT packets if (irq_flags & MXC_F_USB_DEV_INTFL_EP_OUT) { // get and clear OUT irqs uint32_t out_irqs = MXC_USB->out_int; MXC_USB->out_int = out_irqs; if (out_irqs & 1) { EP0out(); } for (uint8_t epnum = 1; epnum < NUMBER_OF_LOGICAL_ENDPOINTS; epnum++) { uint32_t irq_mask = (1 << epnum); if (out_irqs & irq_mask) { uint8_t endpoint = (epnum << 1) | DIR_OUT; (instance->*(epCallback[endpoint]))(); } } } } #endif