Test program for a Max30102 heartrate sensor on a STM32L476RG specific board ENSMM
Dependencies: mbed
These two pictures show how to connect the Mheuve Sensor to the ST-Link debugger (don't forget to disable ST-link jumpers and JP5 on the board! ):
These two pictures show how to connect the Mheuve Sensor TX RX to the ST-Link debugger (don't forget to cross TX and RX, it means Mheuve sensor TX on ST-Link RX and ST-Link TX on Mheuve sensor RX ):
The Mheuve sensor board needs to be powered by an external battery.
The result appears on the terminal, speed config is 115200 bds.
Diff: algorithm/algorithm.cpp
- Revision:
- 0:346a7fa07998
- Child:
- 1:e88f22c6c1b0
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/algorithm/algorithm.cpp Wed Apr 20 21:46:06 2016 +0000 @@ -0,0 +1,378 @@ +/** \file algorithm.h ****************************************************** +* +* Project: MAXREFDES117# +* Filename: algorithm.c +* Description: This module calculates the heart rate/SpO2 level +* +* Revision History: +*\n 1-18-2016 Rev 01.00 SK Initial release. +*\n +* +* -------------------------------------------------------------------- +* +* This code follows the following naming conventions: +* +*\n char ch_pmod_value +*\n char (array) s_pmod_s_string[16] +*\n float f_pmod_value +*\n int32_t n_pmod_value +*\n int32_t (array) an_pmod_value[16] +*\n int16_t w_pmod_value +*\n int16_t (array) aw_pmod_value[16] +*\n uint16_t uw_pmod_value +*\n uint16_t (array) auw_pmod_value[16] +*\n uint8_t uch_pmod_value +*\n uint8_t (array) auch_pmod_buffer[16] +*\n uint32_t un_pmod_value +*\n int32_t * pn_pmod_value +* +* ------------------------------------------------------------------------- */ +/******************************************************************************* +* Copyright (C) 2015 Maxim Integrated Products, Inc., All Rights Reserved. +* +* Permission is hereby granted, free of charge, to any person obtaining a +* copy of this software and associated documentation files (the "Software"), +* to deal in the Software without restriction, including without limitation +* the rights to use, copy, modify, merge, publish, distribute, sublicense, +* and/or sell copies of the Software, and to permit persons to whom the +* Software is furnished to do so, subject to the following conditions: +* +* The above copyright notice and this permission notice shall be included +* in all copies or substantial portions of the Software. +* +* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS +* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF +* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. +* IN NO EVENT SHALL MAXIM INTEGRATED BE LIABLE FOR ANY CLAIM, DAMAGES +* OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, +* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR +* OTHER DEALINGS IN THE SOFTWARE. +* +* Except as contained in this notice, the name of Maxim Integrated +* Products, Inc. shall not be used except as stated in the Maxim Integrated +* Products, Inc. Branding Policy. +* +* The mere transfer of this software does not imply any licenses +* of trade secrets, proprietary technology, copyrights, patents, +* trademarks, maskwork rights, or any other form of intellectual +* property whatsoever. Maxim Integrated Products, Inc. retains all +* ownership rights. +******************************************************************************* +*/ +#include "algorithm.h" +#include "mbed.h" + +void maxim_heart_rate_and_oxygen_saturation(uint32_t *un_ir_buffer , int32_t n_ir_buffer_length, uint32_t *un_red_buffer , int32_t *n_spo2, int8_t *ch_spo2_valid , + int32_t *n_heart_rate , int8_t *ch_hr_valid) +/** +* \brief Calculate the heart rate and SpO2 level +* \par Details +* By detecting peaks of PPG cycle and corresponding AC/DC of red/infra-red signal, the ratio for the SPO2 is computed. +* Since this algorithm is aiming for Arm M0/M3. formaula for SPO2 did not achieve the accuracy due to register overflow. +* Thus, accurate SPO2 is precalculated and save longo uch_spo2_table[] per each ratio. +* +* \param[in] *un_ir_buffer - IR sensor data buffer +* \param[in] n_ir_buffer_length - IR sensor data buffer length +* \param[in] *un_red_buffer - Red sensor data buffer +* \param[out] *n_spo2 - Calculated SpO2 value +* \param[out] *ch_spo2_valid - 1 if the calculated SpO2 value is valid +* \param[out] *n_heart_rate - Calculated heart rate value +* \param[out] *ch_hr_valid - 1 if the calculated heart rate value is valid +* +* \retval None +*/ +{ + + + uint32_t irMean ,onlyOnce ; + int32_t k ,iRatioCount; + int32_t i,s ,m, exact_ir_valley_locs_count ,middleIdx; + int32_t th1, n_npks,cMin; + int32_t ir_valley_locs[15] ; + int32_t exact_ir_valley_locs[15] ; + int32_t dx_peak_locs[15] ; + int32_t peakintervalSum; + + int32_t yAC, xAC; + int32_t spo2calc; + int32_t yDCmax, xDCmax; + int32_t yDCmaxIdx, xDCmaxIdx; + int32_t ratio[5],ratioAverage; + int32_t nume, denom ; + // remove DC of ir signal + irMean =0; + for (k=0 ; k<n_ir_buffer_length ; k++ ) irMean += un_ir_buffer[k] ; + irMean =irMean/n_ir_buffer_length ; + for (k=0 ; k<n_ir_buffer_length ; k++ ) n_x[k] = un_ir_buffer[k] - irMean ; + + // 4 pt Moving Average + for(k=0; k< BUFFER_SIZE-MA4_SIZE; k++){ + denom= ( n_x[k]+n_x[k+1]+ n_x[k+2]+ n_x[k+3]); + n_x[k]= denom/(int32_t)4; + } + + // get difference of smoothed IR signal + + for( k=0; k<BUFFER_SIZE-MA4_SIZE-1; k++) + n_dx[k]= (n_x[k+1]- n_x[k]); + + // 2-pt Moving Average to n_dx + for(k=0; k< BUFFER_SIZE-MA4_SIZE-2; k++){ + n_dx[k] = ( n_dx[k]+n_dx[k+1])/2 ; + } + + // hamming window + // flip wave form so that we can detect valley with peak detector + for ( i=0 ; i<BUFFER_SIZE-HAMMING_SIZE-MA4_SIZE-2 ;i++){ + s= 0; + for( k=i; k<i+ HAMMING_SIZE ;k++){ + s -= n_dx[k] *uw_hamm[k-i] ; + } + n_dx[i]= s/ (int32_t)1146; // divide by sum of uw_hamm + } + + + th1=0; // threshold calculation + for ( k=0 ; k<BUFFER_SIZE-HAMMING_SIZE ;k++){ + th1 += ((n_dx[k]>0)? n_dx[k] : ((int32_t)0-n_dx[k])) ; + } + th1= th1/ ( BUFFER_SIZE-HAMMING_SIZE); + // peak location is acutally index for sharpest location of raw signal since we flipped the signal + maxim_find_peaks( dx_peak_locs, &n_npks, n_dx, BUFFER_SIZE-HAMMING_SIZE, th1, 8, 5 );//peak_height, peak_distance, max_num_peaks + + peakintervalSum =0; + if (n_npks>=2){ + for (k=1; k<n_npks; k++) + peakintervalSum += (dx_peak_locs[k] -dx_peak_locs[k -1] ) ; + peakintervalSum =peakintervalSum/(n_npks-1); + *n_heart_rate =(int32_t)( 6000/ peakintervalSum );// beats per minutes + //prlongf(">>> *n_heart_rate= %d \n", *n_heart_rate) ; + *ch_hr_valid = 1; + } + else { + *n_heart_rate = -999; + *ch_hr_valid = 0; + } + + for ( k=0 ; k<n_npks ;k++) + ir_valley_locs[k]= dx_peak_locs[k] +HAMMING_SIZE /2; + + + // raw value : RED(=y) and IR(=X) + // we need to assess DC and AC value of ir and red PPG. + for (k=0 ; k<n_ir_buffer_length ; k++ ) { + n_x[k] = un_ir_buffer[k] ; + n_y[k] = un_red_buffer[k] ; + } + + // find precise min near ir_valley_locs + exact_ir_valley_locs_count =0; + for ( k=0 ; k<n_npks ;k++){ + onlyOnce =1; + m=ir_valley_locs[k]; + cMin= 16777216;//2^24; + if (m+5 < BUFFER_SIZE-HAMMING_SIZE && m-5 >0){ + + for(i= m-5;i<m+5; i++) + if (n_x[i]<cMin){ + if (onlyOnce >0){ + onlyOnce =0; + } + cMin= n_x[i] ; + exact_ir_valley_locs[k]=i; + } + if (onlyOnce ==0) exact_ir_valley_locs_count ++ ; + } + } + if (exact_ir_valley_locs_count <2 ){ + *n_spo2 = -999 ; // do not use SPO2 since signal ratio is out of range + *ch_spo2_valid = 0; + return; + } + // 4 pt MA + for(k=0; k< BUFFER_SIZE-MA4_SIZE; k++){ + n_x[k]=( n_x[k]+n_x[k+1]+ n_x[k+2]+ n_x[k+3])/(int32_t)4; + n_y[k]=( n_y[k]+n_y[k+1]+ n_y[k+2]+ n_y[k+3])/(int32_t)4; + + } + + //using exact_ir_valley_locs , find ir-red DC andir-red AC for SPO2 calibration ratio + //finding AC/DC maximum of raw ir * red between two valley locations + ratioAverage =0; + iRatioCount = 0; + + for(k=0; k< 5; k++) ratio[k]=0; + for (k=0; k< exact_ir_valley_locs_count; k++){ + if (exact_ir_valley_locs[k] > BUFFER_SIZE ){ + *n_spo2 = -999 ; // do not use SPO2 since valley loc is out of range + *ch_spo2_valid = 0; + return; + } + } + // find max between two valley locations + // and use ratio betwen AC compoent of Ir & Red and DC compoent of Ir & Red for SPO2 + + for (k=0; k< exact_ir_valley_locs_count-1; k++){ + yDCmax= -16777216 ; + xDCmax= - 16777216; + // printf("range=%d: %d\n ", exact_ir_valley_locs[k], exact_ir_valley_locs[k+1]); + if (exact_ir_valley_locs[k+1]-exact_ir_valley_locs[k] >10){ + for (i=exact_ir_valley_locs[k]; i< exact_ir_valley_locs[k+1]; i++){ + + if (n_x[i]> xDCmax) {xDCmax =n_x[i];xDCmaxIdx =i; } + if (n_y[i]> yDCmax) {yDCmax =n_y[i];yDCmaxIdx=i;} + } + yAC= (n_y[exact_ir_valley_locs[k+1]] - n_y[exact_ir_valley_locs[k] ] )*(yDCmaxIdx -exact_ir_valley_locs[k]); //red + yAC= n_y[exact_ir_valley_locs[k]] + yAC/ (exact_ir_valley_locs[k+1] - exact_ir_valley_locs[k]) ; + + + yAC= n_y[yDCmaxIdx] - yAC; // subracting linear DC compoenents from raw + xAC= (n_x[exact_ir_valley_locs[k+1]] - n_x[exact_ir_valley_locs[k] ] )*(xDCmaxIdx -exact_ir_valley_locs[k]); // ir + xAC= n_x[exact_ir_valley_locs[k]] + xAC/ (exact_ir_valley_locs[k+1] - exact_ir_valley_locs[k]); + xAC= n_x[yDCmaxIdx] - xAC; // subracting linear DC compoenents from raw + nume=( yAC *xDCmax)>>7 ; //prepare X100 to preserve floating value + denom= ( xAC *yDCmax)>>7; + if (denom>0 && iRatioCount <5 && nume != 0) + { + ratio[iRatioCount]= (nume*100)/denom ; //formular is ( yAC *xDCmax) / ( xAC *yDCmax) ; + iRatioCount++; + } + } + + // prlongf("ratio[%d]= %d exact_ir_valley_locs[k] =%d , exact_ir_valley_locs[%d] =%d \n",k, ratio[k] ,exact_ir_valley_locs[k] ,k+1, exact_ir_valley_locs[k+1] ) ; + // prlongf("nume= %d ,denom= %d yAC = %d, xDCmax = %d, xAC= %d, yDCmax = %d\n",nume, denom, yAC ,xDCmax ,xAC ,yDCmax ); + + } + + maxim_sort_ascend(ratio, iRatioCount); + middleIdx= iRatioCount/2; + + if (middleIdx >1) + ratioAverage =( ratio[middleIdx-1] +ratio[middleIdx])/2; // use median + else + ratioAverage = ratio[middleIdx ]; + + if( ratioAverage>2 && ratioAverage <184){ + spo2calc= uch_spo2_table[ratioAverage] ; + *n_spo2 = spo2calc ; + *ch_spo2_valid = 1;// float_SPO2 = -45.060*ratioAverage* ratioAverage/10000 + 30.354 *ratioAverage/100 + 94.845 ; // for comparison with table + } + else{ + *n_spo2 = -999 ; // do not use SPO2 since signal ratio is out of range + *ch_spo2_valid = 0; + } + + +} + + +void maxim_find_peaks( int32_t *n_locs, int32_t *n_npks, int32_t *n_x, int32_t n_size, int32_t n_min_height, int32_t n_min_distance, int32_t n_max_num ) +/** +* \brief Find peaks +* \par Details +* Find at most MAX_NUM peaks above MIN_HEIGHT separated by at least MIN_DISTANCE +* +* \retval None +*/ +{ + maxim_peaks_above_min_height( n_locs, n_npks, n_x, n_size, n_min_height ); + maxim_remove_close_peaks( n_locs, n_npks, n_x, n_min_distance ); + *n_npks = min( *n_npks, n_max_num ); +} + +void maxim_peaks_above_min_height( int32_t *n_locs, int32_t *n_npks, int32_t *n_x, int32_t n_size, int32_t n_min_height ) +/** +* \brief Find peaks above n_min_height +* \par Details +* Find all peaks above MIN_HEIGHT +* +* \retval None +*/ +{ + int32_t i = 1, width; + *n_npks = 0; + + while (i < n_size-1){ + if (n_x[i] > n_min_height && n_x[i] > n_x[i-1]){ // find left edge of potential peaks + width = 1; + while (i+width < n_size && n_x[i] == n_x[i+width]) // find flat peaks + width++; + if (n_x[i] > n_x[i+width] && (*n_npks) < 15 ){ // find right edge of peaks + n_locs[(*n_npks)++] = i; + // for flat peaks, peak location is left edge + i += width+1; + } + else + i += width; + } + else + i++; + } +} + + +void maxim_remove_close_peaks( int32_t *n_locs, int32_t *n_npks, int32_t *n_x, int32_t n_min_distance ) +/** +* \brief Remove peaks +* \par Details +* Remove peaks separated by less than MIN_DISTANCE +* +* \retval None +*/ +{ + + int32_t i, j, old_npks, dist; + + /* Order peaks from large to small */ + maxim_sort_indices_descend( n_x, n_locs, *n_npks ); + + for ( i = -1; i < *n_npks; i++ ){ + old_npks = *n_npks; + *n_npks = i+1; + for ( j = i+1; j < old_npks; j++ ){ + dist = n_locs[j] - ( i == -1 ? -1 : n_locs[i] ); // lag-zero peak of autocorr is at index -1 + if ( dist > n_min_distance || dist < -n_min_distance ) + n_locs[(*n_npks)++] = n_locs[j]; + } + } + + // Resort indices longo ascending order + maxim_sort_ascend( n_locs, *n_npks ); +} + +void maxim_sort_ascend(int32_t *n_x, int32_t n_size) +/** +* \brief Sort array +* \par Details +* Sort array in ascending order (insertion sort algorithm) +* +* \retval None +*/ +{ + int32_t i, j, temp; + for (i = 1; i < n_size; i++) { + temp = n_x[i]; + for (j = i; j > 0 && temp < n_x[j-1]; j--) + n_x[j] = n_x[j-1]; + n_x[j] = temp; + } +} + +void maxim_sort_indices_descend( int32_t *n_x, int32_t *n_indx, int32_t n_size) +/** +* \brief Sort indices +* \par Details +* Sort indices according to descending order (insertion sort algorithm) +* +* \retval None +*/ +{ + int32_t i, j, temp; + for (i = 1; i < n_size; i++) { + temp = n_indx[i]; + for (j = i; j > 0 && n_x[temp] > n_x[n_indx[j-1]]; j--) + n_indx[j] = n_indx[j-1]; + n_indx[j] = temp; + } +} +