Mouse code for the MacroRat

Dependencies:   ITG3200 QEI

main.cpp

Committer:
christine222
Date:
2017-05-13
Revision:
13:2032db00f168
Parent:
12:5790e56a056f
Child:
14:9e7bb03ddccb

File content as of revision 13:2032db00f168:

#include "mbed.h"

#include "irpair.h"
#include "main.h"
#include "motor.h"

#include <stdlib.h>
#include "ITG3200.h"
#include "stm32f4xx.h" 
#include "QEI.h"


/* Constants for when HIGH_PWM_VOLTAGE = 0.2
#define IP_CONSTANT 6
#define II_CONSTANT 0
#define ID_CONSTANT 1
*/

// Constants for when HIGH_PWM_VOLTAGE = 0.1
#define IP_CONSTANT 13
#define II_CONSTANT 0
#define ID_CONSTANT 1.

const int desiredCountR = 1300;
const int desiredCountL = 1400;

void turnLeft(){
    double speed0 = 0.15;
    double speed1 = 0.15;
    double kp = 0.01;

    int counter = 0;
    
    int initialCount0 = encoder0.getPulses();
    int initialCount1 = encoder1.getPulses();

    double desiredCount0 = initialCount0 - desiredCountL;
    double desiredCount1 = initialCount1 + desiredCountL;

    int count0 = initialCount0;
    int count1 = initialCount1;

    double error0 = count0 - desiredCount0;
    double error1 = count1 - desiredCount1;

    while(1){

        if(!(abs(error0) < 1) && !(abs(error1) < 1)){
            count0 = encoder0.getPulses();
            count1 = encoder1.getPulses();

            error0 = count0 - desiredCount0; 
            error1 = count1 - desiredCount1; 

            speed0 = error0 * kp + speed0;
            speed1 = error1 * kp + speed1;

            right_motor.move(speed0);
            left_motor.move(speed1);
            counter = 0;
        }else{
            counter++;
            right_motor.brake();
            left_motor.brake();
        }

        if (counter > 60){
            break;
        }
     }

    right_motor.brake();
    left_motor.brake();
}

void turnRight() { //e1 should be negative encoder0 is left, encoder1 is right
    double speed0 = 0.15;
    double speed1 = 0.15;
    double kp = 0.01;

    int counter = 0;
    
    int initialCount0 = encoder0.getPulses();
    int initialCount1 = encoder1.getPulses();

    double desiredCount0 = initialCount0 + desiredCountR;
    double desiredCount1 = initialCount1 - desiredCountR;

    int count0 = initialCount0;
    int count1 = initialCount1;

    double error0 = count0 - desiredCount0;
    double error1 = count1 - desiredCount1;

    while(1){

        if(!(abs(error0) < 1) && !(abs(error1) < 1)){
            count0 = encoder0.getPulses();
            count1 = encoder1.getPulses();

            error0 = count0 - desiredCount0; // moves forward
            error1 = count1 - desiredCount1; // moves backwards

            speed0 = error0 * kp + speed0;
            speed1 = error1 * kp + speed1;

            right_motor.move(speed0);
            left_motor.move(speed1);
            counter = 0;
        }else{
            counter++;
            right_motor.brake();
            left_motor.brake();
        }

        if (counter > 60){
            break;
        }
        
        // serial.printf("ERROR=> 0:%f, 1:%f, SPEED=> 0:%f, 1:%f\n", error0, error1, speed0, speed1);
        // serial.printf("Pulse Count=> e0:%d, e1:%d      \r\n", encoder0.getPulses(), encoder1.getPulses());
    }

    right_motor.brake();
    left_motor.brake();
}

void turnLeft180(){
    double speed0 = 0.15;
    double speed1 = 0.15;
    double kp = 0.01;

    int counter = 0;
    
    int initialCount0 = encoder0.getPulses();
    int initialCount1 = encoder1.getPulses();

    double desiredCount0 = initialCount0 - 3000;
    double desiredCount1 = initialCount1 + 2700;

    int count0 = initialCount0;
    int count1 = initialCount1;

    double error0 = count0 - desiredCount0;
    double error1 = count1 - desiredCount1;

    while(1){

        if(!(abs(error0) < 1) && !(abs(error1) < 1)){
            count0 = encoder0.getPulses();
            count1 = encoder1.getPulses();

            error0 = count0 - desiredCount0; 
            error1 = count1 - desiredCount1; 

            speed0 = error0 * kp + speed0;
            speed1 = error1 * kp + speed1;

            right_motor.move(speed0);
            left_motor.move(speed1);
            counter = 0;
        }else{
            counter++;
            right_motor.brake();
            left_motor.brake();
        }

        if (counter > 60){
            break;
        }
     }

    right_motor.brake();
    left_motor.brake();
}

void turnRight180(){
    double speed0 = 0.15;
    double speed1 = 0.15;
    double kp = 0.01;

    int counter = 0;
    
    int initialCount0 = encoder0.getPulses();
    int initialCount1 = encoder1.getPulses();

    double desiredCount0 = initialCount0 + desiredCountR*2;
    double desiredCount1 = initialCount1 - desiredCountR*2;

    int count0 = initialCount0;
    int count1 = initialCount1;

    double error0 = count0 - desiredCount0;
    double error1 = count1 - desiredCount1;

    while(1){

        if(!(abs(error0) < 1) && !(abs(error1) < 1)){
            count0 = encoder0.getPulses();
            count1 = encoder1.getPulses();

            error0 = count0 - desiredCount0; // moves forward
            error1 = count1 - desiredCount1; // moves backwards

            speed0 = error0 * kp + speed0;
            speed1 = error1 * kp + speed1;

            right_motor.move(speed0);
            left_motor.move(speed1);
            counter = 0;
        }else{
            counter++;
            right_motor.brake();
            left_motor.brake();
        }

        if (counter > 60){
            break;
        }
        
        // serial.printf("ERROR=> 0:%f, 1:%f, SPEED=> 0:%f, 1:%f\n", error0, error1, speed0, speed1);
        // serial.printf("Pulse Count=> e0:%d, e1:%d      \r\n", encoder0.getPulses(), encoder1.getPulses());
    }

    right_motor.brake();
    left_motor.brake();
}

void moveForwardUntilWallIr() {    
    double currentError = 0;
    double previousError = 0;
    double derivError = 0;
    double sumError = 0;
    
    double HIGH_PWM_VOLTAGE = 0.1;
    
    double rightSpeed = 0.1;
    double leftSpeed = 0.1;
    
    float ir2 = IRP_2.getSamples( SAMPLE_NUM );
    float ir3 = IRP_3.getSamples( SAMPLE_NUM );
    
    int count = encoder0.getPulses();
    while ((IRP_1.getSamples( SAMPLE_NUM ) + IRP_4.getSamples( SAMPLE_NUM ) )/2 < 0.05f) {
        int pulseCount = (encoder0.getPulses()-count) % 5600;
        if (pulseCount > 5400 && pulseCount < 5800) {
            blueLed.write(0);
        } else {
            blueLed.write(1);
        }
        
        
        currentError = ( (IRP_2.getSamples( SAMPLE_NUM ) - IRP_2.sensorAvg) ) - ( (IRP_3.getSamples( SAMPLE_NUM ) - IRP_3.sensorAvg) ) ;
        derivError = currentError - previousError;
        double PIDSum = IP_CONSTANT*currentError + II_CONSTANT*sumError + ID_CONSTANT*derivError;       
        if (PIDSum > 0) { // this means the leftWheel is faster than the right. So right speeds up, left slows down
            rightSpeed = HIGH_PWM_VOLTAGE - abs(PIDSum*HIGH_PWM_VOLTAGE);       
            leftSpeed = HIGH_PWM_VOLTAGE + abs(PIDSum*HIGH_PWM_VOLTAGE);
        } else { // r is faster than L. speed up l, slow down r  
            rightSpeed = HIGH_PWM_VOLTAGE + abs(PIDSum*HIGH_PWM_VOLTAGE);       
            leftSpeed = HIGH_PWM_VOLTAGE - abs(PIDSum*HIGH_PWM_VOLTAGE);   
        }
        
        if (leftSpeed > 0.30) leftSpeed = 0.30;
        if (leftSpeed < 0) leftSpeed = 0;
        if (rightSpeed > 0.30) rightSpeed = 0.30;
        if (rightSpeed < 0) rightSpeed = 0;

        right_motor.forward(rightSpeed);  
        left_motor.forward(leftSpeed);
        
        previousError = currentError;
        
        ir2 = IRP_2.getSamples( SAMPLE_NUM );
        ir3 = IRP_3.getSamples( SAMPLE_NUM );       
        
    }
    //sensor1Turn = IR_Sensor1.read();
    //sensor4Turn = IR_Sensor4.read();
    
    //backward();
    wait_ms(40);
    //brake();
    
    left_motor.brake();
    right_motor.brake();
}

void printDipFlag() {
    if (DEBUGGING) serial.printf("Flag value is %d", dipFlags);
}

void enableButton1() {
    dipFlags |= BUTTON1_FLAG;
    printDipFlag();
}
void enableButton2() {
    dipFlags |= BUTTON2_FLAG;
    printDipFlag();
}
void enableButton3() {
    dipFlags |= BUTTON3_FLAG;
    printDipFlag();
}
void enableButton4() {
    dipFlags |= BUTTON4_FLAG;
    printDipFlag();
}
void disableButton1() {
    dipFlags &= ~BUTTON1_FLAG;
    printDipFlag();
}
void disableButton2() {
    dipFlags &= ~BUTTON2_FLAG;
    printDipFlag();
}
void disableButton3() {
    dipFlags &= ~BUTTON3_FLAG;
    printDipFlag();
}
void disableButton4() {
    dipFlags &= ~BUTTON4_FLAG;
    printDipFlag();
}

int main()
{
    //enableMotors();
    //Set highest bandwidth.
    gyro.setLpBandwidth(LPFBW_42HZ);
    serial.baud(9600);
    serial.printf("The gyro's address is %s", gyro.getWhoAmI());

    wait (0.1);

//    IR_1.write(1);
//    IR_2.write(1);
//    IR_3.write(1);
//    IR_4.write(1);

    redLed.write(1);
    greenLed.write(1);
    blueLed.write(1);
    
    //left_motor.forward(0.1);
    //right_motor.forward(0.1);

    // PA_1 is A of right
    // PA_0 is B of right
    // PA_5 is A of left
    // PB_3 is B of left
    //QEI encoder0( PA_5, PB_3, NC, PULSES, QEI::X4_ENCODING );
//    QEI encoder1( PA_1, PA_0, NC, PULSES, QEI::X4_ENCODING );
    
    // TODO: Setting all the registers and what not for Quadrature Encoders
/*    RCC->APB1ENR |= 0x1001; // Enable clock for Tim2 (Bit 0) and Tim5 (Bit 3)
    RCC->AHB1ENR |= 0x11; // Enable GPIO port clock enables for Tim2(A) and Tim5(B)
    GPIOA->AFR[0] |= 0x10; // Set GPIO alternate function modes for Tim2
    GPIOB->AFR[0] |= 0x100; // Set GPIO alternate function modes for Tim5
    */
    
    // set GPIO pins to alternate for the pins corresponding to A/B for eacah encoder, and 2 alternate function registers need to be selected for each type
    // of alternate function specified
    // 4 modes sets AHB1ENR
    // Now TMR: enable clock with timer, APB1ENR
    // set period, autoreload value, ARR value 2^32-1, CR1 - TMR resets itself, ARPE and EN
    //
    // Encoder mode: disable timer before changing timer to encoder
    // CCMR1/2 1/2 depends on channel 1/2 or 3/4, depends on upper bits, depending which channels you use
    // CCMR sets sample rate and set the channel to input
    // CCER, which edge to trigger on, cannot be 11(not allowed for encoder mode), CCER for both channels
    // SMCR - encoder mode
    // CR1 reenabales
    // then read CNT reg of timer
    
    
    dipButton1.rise(&enableButton1);
    dipButton2.rise(&enableButton2);
    dipButton3.rise(&enableButton3);
    dipButton4.rise(&enableButton4);
    
    dipButton1.fall(&disableButton1);
    dipButton2.fall(&disableButton2);
    dipButton3.fall(&disableButton3);
    dipButton4.fall(&disableButton4);
    

    while (1) {
        
        // moveForwardUntilWallIr();
        // wait(2);
        //turnRight180();
        wait(0.5);
        turnLeft180();
        wait(1);
        //turnRight180();
        wait(1);
        //turnLeft();

        // wait(1);
        // turnLeft();
        // wait(1);
        // turnRight();
        // wait(1);
        // turnRight();
        // turnRight180();
        // wait(1);
        // turnLeft180();
        // wait(1);
        break;
        //serial.printf("%i, %i, %i\n", gyro.getGyroX(), gyro.getGyroY(), gyro.getGyroZ());
//        serial.printf("Pulse Count=> e0:%d, e1:%d      \r\n", encoder0.getPulses(),encoder1.getPulses());
        //double currentError = ( (IRP_2.getSamples( SAMPLE_NUM ) - IRP_2.sensorAvg) ) - ( (IRP_3.getSamples( SAMPLE_NUM ) - IRP_3.sensorAvg) ) ;
        
        //serial.printf("IRS= >: %f, %f, %f, %f, %f \r\n", 
        //    IRP_1.getSamples( 100 ), IRP_2.getSamples( 100 ), IRP_3.getSamples( 100 ), IRP_4.getSamples(100), currentError );
        
        //reading = Rec_4.read();
//        serial.printf("reading: %f\n", reading);
//        redLed.write(0);
//        wait_ms(1000);
//        redLed.write(1);
//        greenLed.write(0);
//        wait_ms(1000);
//        greenLed.write(1);
//        blueLed.write(0);
//        wait_ms(1000);
//        blueLed.write(1);
    }
}