uses pushing box to publish to google spreadsheets with a state machine instead of a while loop

Fork of GSM_Library by DCS_TEAM

GSMLibrary.cpp

Committer:
danilob
Date:
2015-03-24
Revision:
23:5227fb014aad
Parent:
22:a5adf9331032
Child:
24:7d2ff444d6d8

File content as of revision 23:5227fb014aad:

#include "GSMLibrary.h"
#include "gsmqueue.h"
#include <string.h>

#define TIME_CONST .3
#define SECONDS_TIMEOUT 40
#define TIMEOUTLIMIT SECONDS_TIMEOUT/TIME_CONST //$change check with main code this will set up condition fior timeout.

//definition for AT comands
#define AT_OK "AT"
#define AT_CSQ "AT+CSQ" 
#define AT_CREG "AT+CREG?"
#define AT_CMGF "AT+CMGF=1"
#define RECEIVER_PHONE_NUMBER "\"+12083608384\""
#define AT_CMGS "AT+CMGS=" RECEIVER_PHONE_NUMBER 
#define MESSAGE_BODY "stress test\32\32"


//Definition for AT repsonses
//Please notice that after ":" the gsm will usually send aditional information
#define AT_OK_RESPONSE "OK" //Response after sending "AT" message
#define AT_CSQ_RESPONSE "+CSQ:" //+CSQ: <arg1>,<arg2> where <arg1> is signal strength arg1 = 0-30 where a number below 10 means low signal strength and 99 is not knwn or detectable signal and arg2 is bit error rate form 0-7, 99 will represent error 
#define AT_CREG_RESPONSE "+CREG:"//+CREG: <arg1>,<arg2> where <arg1> = 0-2(see AT command descriptions), <arg2> =  0-5, 0 not registered to nework and not looking for one. 1 is conected to network, 2 is not conected but searching
#define AT_CMGF_RESPONSE "OK"
#define AT_CMGS_RESPONSE ">"  //Message is written aftersymbol
#define AT_SENDSMS_RESPONSE ">" // +CMGS: <id> this will include the message id. CMGS ERROR for error and 
#define AT_SUCCESS_RESPONSE "+CMGS:"

//External variables
extern Serial pc;
extern Serial gsm;
extern uint8_t buffer[BUFFER_LENGTH];//buffer storing char

//Internal variables
gsm_states gsm_current_state = GSM_INITIALIZE;
char send = 0;
int timeout_count = 0;
char gsm_msg[MAX_MSG_SIZE + 1]; //1 extra for Ctrl+Z

void gsm_tick()
{
    if (getGSMIdleBit() || gsm_timeOut() || (send && gsm_current_state == GSM_INITIALIZE))  //question with send...
    {
        resetGSMIdleBit();  //reset GSM idle bit
        gsm_nextStateLogic();   //Next state
        gsm_mealyOutputs(); //Mealy outputs
        flushQueue();       //Flush the queue
    }
}



//Advance timeout counter; if timeout, return true
bool gsm_timeOut()
{
    if(++timeout_count >= TIMEOUTLIMIT){
        timeout_count=0; 
        gsm_current_state = GSM_INITIALIZE;
        return true;
    }
    else
        return false;     
}

//Have the GSM send a message
void gsm_send_sms(char msg[])
{
    send = 1;
    strcpy(gsm_msg,msg);  //If we need to optimize later we can do that, but this is more robust
    strcat(gsm_msg,"\x1A");
}

//Return true if gsm is ready
bool gsm_ready()
{
    return (send == 0) ? true : false;
}

//Reset the gsm
void gsm_reset()
{
    gsm_current_state = GSM_INITIALIZE;
}

//Next state logic -----------------------------------------------------
void gsm_nextStateLogic()
{
    printQueue(); //$debug

    switch(gsm_current_state)
    {
        case GSM_INITIALIZE:
            pc.printf("gsm_initialize state\r\n");//&debug
            timeout_count = 0;
            if (send)
                gsm_current_state = GSM_AT_OK;   //unconditional (check it)
            break;
        case GSM_AT_OK:
            pc.printf("inside AT_OK state\r\n");//&debug
            if (findInQueue(AT_OK_RESPONSE))
                gsm_current_state = GSM_AT_CSQ;
            break;
        case GSM_AT_CSQ:
            pc.printf("inside AT_CSQ state \r\n");//&debug
            if(findInQueue(AT_CSQ_RESPONSE))
                gsm_current_state = GSM_AT_CREG;
            break;
        case GSM_AT_CREG:
            pc.printf("gsm_creg state\r\n");//&debug
            if(findInQueue(AT_CREG_RESPONSE))
            {
                pc.printf("creg parse Int1: %d\r\n",parseInt());//&debug
                int q = parseInt();
                pc.printf("creg parse Int2: %d\r\n",q);//&debug
                if(q == 1)
                    gsm_current_state = GSM_AT_CMGF;
            } 
            break;
        case GSM_AT_CMGF:
            pc.printf("gsm_cmgf state\r\n");//&debug
            if(findInQueue(AT_CMGF_RESPONSE))
                gsm_current_state = GSM_AT_CMGS;
            break;
        case GSM_AT_CMGS:
            pc.printf("gsm_cmgs state\r\n");//&debug
            if(findInQueue(AT_CMGS_RESPONSE))
                gsm_current_state = GSM_AT_SENDSMS;
            break;
        case GSM_AT_SENDSMS:
            pc.printf("gsm_send_sms state\r\n");//&debug
            if(findInQueue(AT_SENDSMS_RESPONSE))    //>
            {
                //Check if the "successfully sent" has also already been received (most likely
                //this won't be the case, but if it has been >500 ms there's a possibility
                //we've received both the messages during the same call to our state machine.)
                if(findInQueue(AT_SUCCESS_RESPONSE))
                {
                    pc.printf("Message SENT! msgID: %iY\r\n",parseInt());//&debug
                    send = 0;
                    gsm_current_state = GSM_INITIALIZE; //Skip success state (we've received both)
                }
                else
                    gsm_current_state = GSM_SUCCESS;    //Go to success state
            }
            else
                gsm_current_state = GSM_AT_CMGS;        //Try resending the message (until timeout)
            break;
        case GSM_SUCCESS:
            pc.printf("gsm_success state\r\n");//&debug
            if(findInQueue(AT_SUCCESS_RESPONSE))
            {
                pc.printf("Message SENT! msgID: %iY\r\n",parseInt());//&debug
            }
            send = 0;
            gsm_current_state = GSM_INITIALIZE;     //We will restart regardless of whether it worked
            break;
        default:
            pc.printf("This is a state error");
    }
}

//Mealy output logic ------------------------------------------------------
void gsm_mealyOutputs()
{
    switch(gsm_current_state)
    {
        case GSM_INITIALIZE:
            pc.printf("No Mealy initialize state output\r\n");//&debug
            break;
        case GSM_AT_OK:
            pc.printf("sending AT_OK\r\n");//&debug
            gsm.puts(AT_OK);
            gsm.puts("\r\n"); 
            break;
        case GSM_AT_CSQ:
            pc.printf("sending AT_CSQ\r\n");//&debug
            gsm.puts(AT_CSQ);
            gsm.puts("\r\n"); 
            break;
        case GSM_AT_CREG:
            pc.printf("sending AT_CREG\r\n");//&debug
            gsm.puts(AT_CREG);
            gsm.puts("\r\n"); 
            break;
        case GSM_AT_CMGF:   
            pc.printf("sending AT_CMGF\r\n");//&debug
            gsm.puts(AT_CMGF);
            gsm.puts("\r\n"); 
            break;
        case GSM_AT_CMGS:   
            pc.printf("sending AT_CMGS\r\n");//&debug
            gsm.puts(AT_CMGS);
            gsm.puts("\r\n"); 
            break;
        case GSM_AT_SENDSMS:
            pc.printf("sending message\r\n");//&debug
            gsm.puts(gsm_msg); //substitute char included
            gsm.puts("\r\n"); 
            break;
        case GSM_SUCCESS:
            pc.printf("No Mealy success state output\r\n");//&debug 
            break;
        default:
            pc.printf("This is a state error");
    }
}


//Initialize the GSM
void gsm_initialize(){  
      SIM_SCGC6 |= SIM_SCGC6_DMAMUX_MASK; //enabling dmamux clock
      SIM_SCGC7 |= SIM_SCGC7_DMA_MASK;  // enebaling dma clock
      pc.printf("initializing tregisters...!\r\n");
     // control register mux, enabling uart3 receive        
     DMAMUX_CHCFG0 |= DMAMUX_CHCFG_ENBL_MASK|DMAMUX_CHCFG_SOURCE(8); 
     
     // Enable request signal for channel 0 
     DMA_ERQ = DMA_ERQ_ERQ0_MASK;
     
      // select round-robin arbitration priority
     DMA_CR |= DMA_CR_ERCA_MASK;
     
     //enabled error interrupt for DMA0
     //DMA_EEI = DMA_EEI_EEI0_MASK ;
     //Addres for buffer
     DMA_TCD0_SADDR = (uint32_t) &UART_D_REG(UART3_BASE_PTR);
     DMA_TCD0_DADDR = (uint32_t) buffer;
     // Set an offset for source and destination address
     DMA_TCD0_SOFF = 0x00; 
     DMA_TCD0_DOFF = 0x01; // Destination address offset of 1 byte per transaction
     
     // Set source and destination data transfer size
     DMA_TCD0_ATTR = DMA_ATTR_SSIZE(0) | DMA_ATTR_DSIZE(0);
     
     // Number of bytes to be transfered in each service request of the channel
     DMA_TCD0_NBYTES_MLNO = 0x01;
     // Current major iteration count
    DMA_TCD0_CITER_ELINKNO = DMA_CITER_ELINKNO_CITER(BUFFER_LENGTH);
    DMA_TCD0_BITER_ELINKNO = DMA_BITER_ELINKNO_BITER(BUFFER_LENGTH);
    // Adjustment value used to restore the source and destiny address to the initial value
    // After reading 'len' number of times, the DMA goes back to the beginning by subtracting len*2 from the address (going back to the original address)
    DMA_TCD0_SLAST = 0;   // Source address adjustment
    DMA_TCD0_DLASTSGA = -BUFFER_LENGTH;  // Destination address adjustment   
    // Setup control and status register
    DMA_TCD0_CSR = 0;
       
    // enable interrupt call at end of major loop
    DMA_TCD0_CSR |= DMA_CSR_INTMAJOR_MASK;
    
    //Activate dma trasnfer rx interrupt
    UART_C2_REG(UART3) |= UART_C2_RIE_MASK;
    UART_C5_REG(UART3) |= UART_C5_RDMAS_MASK | UART_C5_ILDMAS_MASK | UART_C5_LBKDDMAS_MASK;
    //activate p fifo   
    UART_PFIFO_REG(UART3) |= UART_PFIFO_RXFE_MASK; //RXFE and buffer size of 1 word
    queueInit();
    pc.printf("Initialization done...\n\r");
}



//initialization debuging purposes
void print_registers() {
    
   
    pc.printf("\n\rDMA REGISTERS\n\r");
    pc.printf("DMA_MUX: 0x%08x\r\n",DMAMUX_CHCFG0);
    pc.printf("SADDR0: 0x%08x\r\n",DMA_TCD0_SADDR);
    pc.printf("DADDR0: 0x%08x\r\n",DMA_TCD0_DADDR);
    pc.printf("CITER0: 0x%08x\r\n",DMA_TCD0_CITER_ELINKNO);
    pc.printf("BITER0: 0x%08x\r\n",DMA_TCD0_BITER_ELINKNO);
    pc.printf("DMA_CR: %08x\r\n", DMA_CR);
    pc.printf("DMA_ES: %08x\r\n", DMA_ES);
    pc.printf("DMA_ERQ: %08x\r\n", DMA_ERQ);
    pc.printf("DMA_EEI: %08x\r\n", DMA_EEI);
    pc.printf("DMA_CEEI: %02x\r\n", DMA_CEEI);
    pc.printf("DMA_SEEI: %02x\r\n", DMA_SEEI);
    pc.printf("DMA_CERQ: %02x\r\n", DMA_CERQ);
    pc.printf("DMA_SERQ: %02x\r\n", DMA_SERQ);
    pc.printf("DMA_CDNE: %02x\r\n", DMA_CDNE);
    pc.printf("DMA_SSRT: %02x\r\n", DMA_SSRT);
    pc.printf("DMA_CERR: %02x\r\n", DMA_CERR);
    pc.printf("DMA_CINT: %02x\r\n", DMA_CINT);
    pc.printf("DMA_INT: %08x\r\n", DMA_INT);
    pc.printf("DMA_ERR: %08x\r\n", DMA_ERR);
    pc.printf("DMA_HRS: %08x\r\n", DMA_HRS);
    pc.printf("DMA_TCD0_DOFF: %08x\r\n",DMA_TCD0_DOFF);
    pc.printf("\n\rUART REGISTERS\n\r");
    pc.printf("UART_BDH_REG: %08x\r\n",UART_BDH_REG(UART3)); 
    pc.printf("UART_C1_REG: %08x\r\n",UART_C1_REG(UART3));
    pc.printf("UART_C2_REG: %08x\r\n",UART_C2_REG(UART3));
    pc.printf("UART_S1_REG: %08x\r\n",UART_S1_REG(UART3));
    pc.printf("UART_s2_REG: %08x\r\n",UART_S2_REG(UART3));  
    pc.printf("UART_C3_REG: %08x\r\n",UART_C3_REG(UART3));
    pc.printf("UART_D_REG: %08x\r\n",UART_D_REG(UART3));
    pc.printf("UART_MA1_REG: %08x\r\n",UART_MA1_REG(UART3));
    pc.printf("UART_MA2_REG: %08x\r\n",UART_MA2_REG(UART3));
    pc.printf("UART_C4_REG: %08x\r\n",UART_C4_REG(UART3));
    pc.printf("UART_C5_REG: %08x\r\n",UART_C5_REG(UART3));
    pc.printf("UART_ED_REG: %08x\r\n",UART_ED_REG(UART3));   
    pc.printf("UART_MODEM_REG: %08x\r\n",UART_MODEM_REG(UART3));
    pc.printf("UART_IR_REG: %08x\r\n",UART_IR_REG(UART3)); 
    pc.printf("UART_PFIFO_REG: %08x\r\n",UART_PFIFO_REG(UART3));
    pc.printf("UART_CFIFO_REG: %08x\r\n",UART_CFIFO_REG(UART3));
    pc.printf("UART_SFIFO_REG: %08x\r\n",UART_SFIFO_REG(UART3)); 
    pc.printf("UART_TWFIFO_REG: %08x\r\n",UART_TWFIFO_REG(UART3));
    pc.printf("UART_TCFIFO_REG: %08x\r\n",UART_TCFIFO_REG(UART3)); 
    pc.printf("UART_RWFIFO_REG: %08x\r\n",UART_RWFIFO_REG(UART3)); 
    pc.printf("UART_RCFIFO_REG: %08x\r\n",UART_RCFIFO_REG(UART3));
  
}