local copy of rgplcd shield
Fork of AdaFruit_RGBLCDShield by
AdaFruit_RGBLCDShield.cpp
- Committer:
- vtraveller
- Date:
- 2014-08-03
- Revision:
- 0:45264ce231f9
- Child:
- 1:24ab601221e2
File content as of revision 0:45264ce231f9:
/*************************************************** This is a library for the Adafruit RGB 16x2 LCD Shield Pick one up at the Adafruit shop! ---------> http://http://www.adafruit.com/products/714 The shield uses I2C to communicate, 2 pins are required to interface Adafruit invests time and resources providing this open source code, please support Adafruit and open-source hardware by purchasing products from Adafruit! Written by Limor Fried/Ladyada for Adafruit Industries. BSD license, all text above must be included in any redistribution ****************************************************/ #include "Adafruit_RGBLCDShield.h" #include <stdio.h> #include <string.h> #include <inttypes.h> // New MBED code to handle porting #define OUTPUT DIR_OUTPUT #define INPUT DIR_INPUT #define LOW 0 #define HIGH 1 #define delayMicroseconds(a) wait(a / 1000000) /* MBED TURNED OFF Arduino i2c (wire) interface #include <Wire.h> #ifdef __AVR__ #define WIRE Wire #else // Arduino Due #define WIRE Wire1 #endif #if ARDUINO >= 100 #include "Arduino.h" #else #include "WProgram.h" #endif */ // When the display powers up, it is configured as follows: // // 1. Display clear // 2. Function set: // DL = 1; 8-bit interface data // N = 0; 1-line display // F = 0; 5x8 dot character font // 3. Display on/off control: // D = 0; Display off // C = 0; Cursor off // B = 0; Blinking off // 4. Entry mode set: // I/D = 1; Increment by 1 // S = 0; No shift // // Note, however, that resetting the Arduino doesn't reset the LCD, so we // can't assume that its in that state when a sketch starts (and the // RGBLCDShield constructor is called). // MBED - wired in serial // MBED - wired in _i2c Adafruit_RGBLCDShield::Adafruit_RGBLCDShield(MCP23017 & inMCP) : Serial(SERIAL_TX, SERIAL_RX) , _i2c(inMCP) { _i2cAddr = 0; _displayfunction = LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS; // the I/O expander pinout _rs_pin = 15; _rw_pin = 14; _enable_pin = 13; _data_pins[0] = 12; // really d4 _data_pins[1] = 11; // really d5 _data_pins[2] = 10; // really d6 _data_pins[3] = 9; // really d7 _button_pins[0] = 0; _button_pins[1] = 1; _button_pins[2] = 2; _button_pins[3] = 3; _button_pins[4] = 4; // we can't begin() yet :( } void Adafruit_RGBLCDShield::init(uint8_t fourbitmode, uint8_t rs, uint8_t rw, uint8_t enable, uint8_t d0, uint8_t d1, uint8_t d2, uint8_t d3, uint8_t d4, uint8_t d5, uint8_t d6, uint8_t d7) { _rs_pin = rs; _rw_pin = rw; _enable_pin = enable; _data_pins[0] = d0; _data_pins[1] = d1; _data_pins[2] = d2; _data_pins[3] = d3; _data_pins[4] = d4; _data_pins[5] = d5; _data_pins[6] = d6; _data_pins[7] = d7; _i2cAddr = 255; _pinMode(_rs_pin, OUTPUT); // we can save 1 pin by not using RW. Indicate by passing 255 instead of pin# if (_rw_pin != 255) { _pinMode(_rw_pin, OUTPUT); } _pinMode(_enable_pin, OUTPUT); if (fourbitmode) _displayfunction = LCD_4BITMODE | LCD_1LINE | LCD_5x8DOTS; else _displayfunction = LCD_8BITMODE | LCD_1LINE | LCD_5x8DOTS; begin(16, 1); } void Adafruit_RGBLCDShield::begin(uint8_t cols, uint8_t lines, uint8_t dotsize) { // check if i2c if (_i2cAddr != 255) { //_i2c.begin(_i2cAddr); //WIRE.begin(); _i2c.reset(); _i2c.pinMode(8, OUTPUT); _i2c.pinMode(6, OUTPUT); _i2c.pinMode(7, OUTPUT); setBacklight(0x7); if (_rw_pin) _i2c.pinMode(_rw_pin, OUTPUT); _i2c.pinMode(_rs_pin, OUTPUT); _i2c.pinMode(_enable_pin, OUTPUT); for (uint8_t i=0; i<4; i++) _i2c.pinMode(_data_pins[i], OUTPUT); unsigned short nPullups = 0; for (uint8_t i=0; i<5; i++) { _i2c.pinMode(_button_pins[i], INPUT); nPullups |= (1 << _button_pins[i]); //_i2c.pullUp(_button_pins[i], 1); } _i2c.internalPullupMask(nPullups); } if (lines > 1) { _displayfunction |= LCD_2LINE; } _numlines = lines; _currline = 0; // for some 1 line displays you can select a 10 pixel high font if ((dotsize != 0) && (lines == 1)) { _displayfunction |= LCD_5x10DOTS; } // SEE PAGE 45/46 FOR INITIALIZATION SPECIFICATION! // according to datasheet, we need at least 40ms after power rises above 2.7V // before sending commands. Arduino can turn on way befer 4.5V so we'll wait 50 delayMicroseconds(50000); // Now we pull both RS and R/W low to begin commands _digitalWrite(_rs_pin, LOW); _digitalWrite(_enable_pin, LOW); if (_rw_pin != 255) { _digitalWrite(_rw_pin, LOW); } //put the LCD into 4 bit or 8 bit mode if (! (_displayfunction & LCD_8BITMODE)) { // this is according to the hitachi HD44780 datasheet // figure 24, pg 46 // we start in 8bit mode, try to set 4 bit mode write4bits(0x03); delayMicroseconds(4500); // wait min 4.1ms // second try write4bits(0x03); delayMicroseconds(4500); // wait min 4.1ms // third go! write4bits(0x03); delayMicroseconds(150); // finally, set to 8-bit interface write4bits(0x02); } else { // this is according to the hitachi HD44780 datasheet // page 45 figure 23 // Send function set command sequence command(LCD_FUNCTIONSET | _displayfunction); delayMicroseconds(4500); // wait more than 4.1ms // second try command(LCD_FUNCTIONSET | _displayfunction); delayMicroseconds(150); // third go command(LCD_FUNCTIONSET | _displayfunction); } // finally, set # lines, font size, etc. command(LCD_FUNCTIONSET | _displayfunction); // turn the display on with no cursor or blinking default _displaycontrol = LCD_DISPLAYON | LCD_CURSOROFF | LCD_BLINKOFF; display(); // clear it off clear(); // Initialize to default text direction (for romance languages) _displaymode = LCD_ENTRYLEFT | LCD_ENTRYSHIFTDECREMENT; // set the entry mode command(LCD_ENTRYMODESET | _displaymode); } /********** high level commands, for the user! */ void Adafruit_RGBLCDShield::clear() { command(LCD_CLEARDISPLAY); // clear display, set cursor position to zero delayMicroseconds(2000); // this command takes a long time! } void Adafruit_RGBLCDShield::home() { command(LCD_RETURNHOME); // set cursor position to zero delayMicroseconds(2000); // this command takes a long time! } void Adafruit_RGBLCDShield::setCursor(uint8_t col, uint8_t row) { int row_offsets[] = { 0x00, 0x40, 0x14, 0x54 }; if ( row > _numlines ) { row = _numlines-1; // we count rows starting w/0 } command(LCD_SETDDRAMADDR | (col + row_offsets[row])); } // Turn the display on/off (quickly) void Adafruit_RGBLCDShield::noDisplay() { _displaycontrol &= ~LCD_DISPLAYON; command(LCD_DISPLAYCONTROL | _displaycontrol); } void Adafruit_RGBLCDShield::display() { _displaycontrol |= LCD_DISPLAYON; command(LCD_DISPLAYCONTROL | _displaycontrol); } // Turns the underline cursor on/off void Adafruit_RGBLCDShield::noCursor() { _displaycontrol &= ~LCD_CURSORON; command(LCD_DISPLAYCONTROL | _displaycontrol); } void Adafruit_RGBLCDShield::cursor() { _displaycontrol |= LCD_CURSORON; command(LCD_DISPLAYCONTROL | _displaycontrol); } // Turn on and off the blinking cursor void Adafruit_RGBLCDShield::noBlink() { _displaycontrol &= ~LCD_BLINKON; command(LCD_DISPLAYCONTROL | _displaycontrol); } void Adafruit_RGBLCDShield::blink() { _displaycontrol |= LCD_BLINKON; command(LCD_DISPLAYCONTROL | _displaycontrol); } // These commands scroll the display without changing the RAM void Adafruit_RGBLCDShield::scrollDisplayLeft(void) { command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVELEFT); } void Adafruit_RGBLCDShield::scrollDisplayRight(void) { command(LCD_CURSORSHIFT | LCD_DISPLAYMOVE | LCD_MOVERIGHT); } // This is for text that flows Left to Right void Adafruit_RGBLCDShield::leftToRight(void) { _displaymode |= LCD_ENTRYLEFT; command(LCD_ENTRYMODESET | _displaymode); } // This is for text that flows Right to Left void Adafruit_RGBLCDShield::rightToLeft(void) { _displaymode &= ~LCD_ENTRYLEFT; command(LCD_ENTRYMODESET | _displaymode); } // This will 'right justify' text from the cursor void Adafruit_RGBLCDShield::autoscroll(void) { _displaymode |= LCD_ENTRYSHIFTINCREMENT; command(LCD_ENTRYMODESET | _displaymode); } // This will 'left justify' text from the cursor void Adafruit_RGBLCDShield::noAutoscroll(void) { _displaymode &= ~LCD_ENTRYSHIFTINCREMENT; command(LCD_ENTRYMODESET | _displaymode); } // Allows us to fill the first 8 CGRAM locations // with custom characters void Adafruit_RGBLCDShield::createChar(uint8_t location, uint8_t charmap[]) { location &= 0x7; // we only have 8 locations 0-7 command(LCD_SETCGRAMADDR | (location << 3)); for (int i=0; i<8; i++) { _putc(charmap[i]); } command(LCD_SETDDRAMADDR); // unfortunately resets the location to 0,0 } /*********** mid level commands, for sending data/cmds */ inline void Adafruit_RGBLCDShield::command(uint8_t value) { send(value, LOW); } #if ARDUINO >= 100 inline size_t Adafruit_RGBLCDShield::write(uint8_t value) { send(value, HIGH); return 1; } #else //inline void Adafruit_RGBLCDShield::write(uint8_t value) { int Adafruit_RGBLCDShield::_putc(int value) { send(value, HIGH); return 1; } #endif /************ low level data pushing commands **********/ // little wrapper for i/o writes void Adafruit_RGBLCDShield::_digitalWrite(uint8_t p, uint8_t d) { if (_i2cAddr != 255) { // an i2c command _i2c.digitalWrite(p, d); } else { // straightup IO // MBED TURNED OFF //digitalWrite(p, d); } } // Allows to set the backlight, if the LCD backpack is used void Adafruit_RGBLCDShield::setBacklight(uint8_t status) { // check if i2c or SPI _i2c.digitalWrite(8, ~(status >> 2) & 0x1); _i2c.digitalWrite(7, ~(status >> 1) & 0x1); _i2c.digitalWrite(6, ~status & 0x1); } // little wrapper for i/o directions void Adafruit_RGBLCDShield::_pinMode(uint8_t p, uint8_t d) { if (_i2cAddr != 255) { // an i2c command _i2c.pinMode(p, d); } else { // straightup IO // MBED TURNED OFF //pinMode(p, d); } } // write either command or data, with automatic 4/8-bit selection void Adafruit_RGBLCDShield::send(uint8_t value, uint8_t mode) { _digitalWrite(_rs_pin, mode); // if there is a RW pin indicated, set it low to Write if (_rw_pin != 255) { _digitalWrite(_rw_pin, LOW); } if (_displayfunction & LCD_8BITMODE) { write8bits(value); } else { write4bits(value>>4); write4bits(value); } } void Adafruit_RGBLCDShield::pulseEnable(void) { _digitalWrite(_enable_pin, LOW); delayMicroseconds(1); _digitalWrite(_enable_pin, HIGH); delayMicroseconds(1); // enable pulse must be >450ns _digitalWrite(_enable_pin, LOW); delayMicroseconds(100); // commands need > 37us to settle } void Adafruit_RGBLCDShield::write4bits(uint8_t value) { if (_i2cAddr != 255) { uint16_t out = 0; //out = _i2c.readGPIOAB(); out = _i2c.digitalWordRead(); // speed up for i2c since its sluggish for (int i = 0; i < 4; i++) { out &= ~(1 << _data_pins[i]); out |= ((value >> i) & 0x1) << _data_pins[i]; } // make sure enable is low out &= ~(1 << _enable_pin); //_i2c.writeGPIOAB(out); _i2c.digitalWordWrite(out); // pulse enable delayMicroseconds(1); out |= (1 << _enable_pin); //_i2c.writeGPIOAB(out); _i2c.digitalWordWrite(out); delayMicroseconds(1); out &= ~(1 << _enable_pin); //_i2c.writeGPIOAB(out); _i2c.digitalWordWrite(out); delayMicroseconds(100); } else { for (int i = 0; i < 4; i++) { _pinMode(_data_pins[i], OUTPUT); _digitalWrite(_data_pins[i], (value >> i) & 0x01); } pulseEnable(); } } void Adafruit_RGBLCDShield::write8bits(uint8_t value) { for (int i = 0; i < 8; i++) { _pinMode(_data_pins[i], OUTPUT); _digitalWrite(_data_pins[i], (value >> i) & 0x01); } pulseEnable(); } uint8_t Adafruit_RGBLCDShield::readButtons(void) { uint8_t reply = 0x1F; for (uint8_t i=0; i<5; i++) { reply &= ~((_i2c.digitalRead(_button_pins[i])) << i); } return reply; }