Inverse kinematics

Dependencies:   Matrix mbed

main.cpp

Committer:
MAHCSnijders
Date:
2018-10-29
Revision:
1:df3d7f71db4b
Parent:
0:4a9c733c3b53
Child:
2:8632e61cafc8

File content as of revision 1:df3d7f71db4b:

#include "mbed.h"
#include "math.h"
#include "Matrix.h"

const float L0 = 0.15;                      // Length between two motors [meter]
const float L1 = 0.10;                      // Length first beam from right motor2 [meter]
const float L2 = 0.30;                      // Length second beam from right motor2 [meter]
const float L3 = 0.15;                      // Length beam between L2 and L4 [meter]
const float L4 = 0.30;                      // Length first beam from left motor1 [meter]
const float L5 = 0.35;                      // Length from L3 to end-effector [meter]
const double PI = 3.14159265359;
volatile float Pe_x;                        // x-coordinate of end-effector from frame 0 [meter]
volatile float Pe_y;                        // y-coordinate of end-effector from frame 0 [meter]
volatile static float des_motor_angle1;     // Desired angle of motor 1 (left) based on kinematics [rad]
volatile static float des_motor_angle2;     // Desired angle of motor 2 (right) based on kinematics [rad]

Ticker kinematics_ticker;                   // Ticker function for inverse kinematics

void InverseKinematics()
{
    // Calculation of the position of joint 3 in frame 0
    float n = sqrt(pow(Pe_x,2) + pow(Pe_y,2));                          // Radius between origin frame 0 and endeffector [meter]
    float omega = acos(-(pow(n,2) - pow(L4,2) - pow(L5,2))/(2*L4*L5));  // Angle between L4 and L5 [rad]
    float q4 = PI - omega;                                              // Angle of joint 3 between L3 and L4
    float theta = atan(L5*sin(q4)/(L4 + L5*cos(q4)));                   // Angle between n and L4
    float lambda = PI - atan(abs(Pe_y/Pe_x));                           // Entire angle between x-axis frame 0 and n
    float des_motor_angle1 = lambda - theta;
    float J3x_0 = L4*cos(des_motor_angle1);                             // x-coordinate of joint 3 in frame 0
    float J3y_0 = L4*sin(des_motor_angle1);                             // y-coordinate of joint 3 in frame 0
    
    // Calculation of the position of joint 2 in frame 0 
    float S = abs(J3y_0 - Pe_y);                                        // Distance between height endeffector and joint 3
    float kappa = asin(S/L5);                                           // Angle of L5  
    float J2x_0 = (L3+L5)*cos(kappa) + Pe_x;                            // x-coordinate of joint 2 in frame 0
    float J2y_0 = (L3+L5)*sin(kappa) + Pe_y;                            // y-coordinate of joint 2 in frame 0
    
    // Calculation of the position of joint 1 in frame 0
    float J2x_1 = J2x_0 - L0;                                           // x-coordinate of joint 2 in frame 1
    float J2y_1 = J2y_0;                                                // y-coordinate of joint 2 in frame 1
    float r = sqrt(pow(J2x_1,2) + pow(J2y_1,2));                        // Radius between origin frame 1 and J2
    float alfa = acos( -(pow(r,2) - pow(L1,2) - pow(L2,2))/(2*L1*L2) ); // Angle opposite of radius r
    float q2 = PI - alfa;                                               // Angle between L1 and L2
    
    // Calculation of motor_angle2
    float beta = atan(L2*sin(q2)/(L1+L2*cos(q2)));                      // Angle between r and L1
    float gamma = PI - atan(abs(J2y_1/J2x_1));                          // Angle between r and x-axis
    // check if gamma works!
    des_motor_angle2 = gamma - beta;
    float J1x_0 = L0 + L1*cos(des_motor_angle2);                        // x-coordinate of joint 1 in frame 0
    float J1y_0 = L1*sin(des_motor_angle2);                             // y-coordinate of joint 1 in frame 0   
    

    // Determining angle delta for safety
    float m = sqrt(pow((abs(J3x_0)+J1x_0),2) + pow((J3y_0 - J1y_0),2)); // Radius between Joint 1 and Joint 3
    float delta = acos(- (pow(m,2) - pow(L2,2) - pow(L3,2))/(2*L2*L3)); // Angle between L2 and L3

}    


int main()
{
    kinematics_ticker.attach(InverseKinematics,0.5);
}