ffff
Dependencies: mbed
Diff: main.cpp
- Revision:
- 0:fd464054a6b5
diff -r 000000000000 -r fd464054a6b5 main.cpp --- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/main.cpp Sat Dec 16 07:32:42 2017 +0000 @@ -0,0 +1,180 @@ +/* MPU9250 Basic Example Code + by: Kris Winer + date: April 1, 2014 + license: Beerware - Use this code however you'd like. If you + find it useful you can buy me a beer some time. + + Demonstrate basic MPU-9250 functionality including parameterizing the register addresses, initializing the sensor, + getting properly scaled accelerometer, gyroscope, and magnetometer data out. Added display functions to + allow display to on breadboard monitor. Addition of 9 DoF sensor fusion using open source Madgwick and + Mahony filter algorithms. Sketch runs on the 3.3 V 8 MHz Pro Mini and the Teensy 3.1. + + SDA and SCL should have external pull-up resistors (to 3.3V). + 10k resistors are on the EMSENSR-9250 breakout board. + + Hardware setup: + MPU9250 Breakout --------- Arduino + VDD ---------------------- 3.3V + VDDI --------------------- 3.3V + SDA ----------------------- A4 + SCL ----------------------- A5 + GND ---------------------- GND + + Note: The MPU9250 is an I2C sensor and uses the Arduino Wire library. + Because the sensor is not 5V tolerant, we are using a 3.3 V 8 MHz Pro Mini or a 3.3 V Teensy 3.1. + We have disabled the internal pull-ups used by the Wire library in the Wire.h/twi.c utility file. + We are also using the 400 kHz fast I2C mode by setting the TWI_FREQ to 400000L /twi.h utility file. + */ + +//#include "ST_F401_84MHZ.h" +//F401_init84 myinit(0); +#include "mbed.h" +#include "MPU9250.h" +Serial bt(PA_15, PB_7); + + +// Using NOKIA 5110 monochrome 84 x 48 pixel display +// pin 9 - Serial clock out (SCLK) +// pin 8 - Serial data out (DIN) +// pin 7 - Data/Command select (D/C) +// pin 5 - LCD chip select (CS) +// pin 6 - LCD reset (RST) +//Adafruit_PCD8544 display = Adafruit_PCD8544(9, 8, 7, 5, 6); + +char buffer[14]; + + MPU9250 mpu9250; + Serial pc(USBTX, USBRX); + float pitchAngle , rollAngle , pitchAngle_rad , rollAngle_rad , yawAngle; +int main() +{ + pc.baud(9600); + i2c.frequency(400000); // use fast (400 kHz) I2C + pc.printf("CPU SystemCoreClock is %d Hz\r\n", SystemCoreClock); + // Read the WHO_AM_I register, this is a good test of communication + uint8_t whoami = mpu9250.readByte(MPU9250_ADDRESS, WHO_AM_I_MPU9250); // Read WHO_AM_I register for MPU-9250 + pc.printf("I AM 0x%x\n\r", whoami); pc.printf("I SHOULD BE 0x73\n\r"); + if (whoami == 0x73) // WHO_AM_I should always be 0x68 + { +// pc.printf("MPU9250 WHO_AM_I is 0x%x\n\r", whoami); +// pc.printf("MPU9250 is online...\n\r"); +// sprintf(buffer, "0x%x", whoami); +// wait(1); + mpu9250.resetMPU9250(); // Reset registers to default in preparation for device calibration + mpu9250.MPU9250SelfTest(SelfTest); // Start by performing self test and reporting values +// pc.printf("x-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[0]); +// pc.printf("y-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[1]); +// pc.printf("z-axis self test: acceleration trim within : %f % of factory value\n\r", SelfTest[2]); +// pc.printf("x-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[3]); +// pc.printf("y-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[4]); +// pc.printf("z-axis self test: gyration trim within : %f % of factory value\n\r", SelfTest[5]); + mpu9250.calibrateMPU9250(gyroBias, accelBias); // Calibrate gyro and accelerometers, load biases in bias registers +// pc.printf("x gyro bias = %f\n\r", gyroBias[0]); +// pc.printf("y gyro bias = %f\n\r", gyroBias[1]); +// pc.printf("z gyro bias = %f\n\r", gyroBias[2]); +// pc.printf("x accel bias = %f\n\r", accelBias[0]); +// pc.printf("y accel bias = %f\n\r", accelBias[1]); +// pc.printf("z accel bias = %f\n\r", accelBias[2]); + wait(1); + mpu9250.initMPU9250(); + pc.printf("MPU9250 initialized for active data mode....\n\r"); // Initialize device for active mode read of acclerometer, gyroscope, and temperature + mpu9250.initAK8963(magCalibration); +// pc.printf("AK8963 initialized for active data mode....\n\r"); // Initialize device for active mode read of magnetometer +// pc.printf("Accelerometer full-scale range = %f g\n\r", 2.0f*(float)(1<<Ascale)); +// pc.printf("Gyroscope full-scale range = %f deg/s\n\r", 250.0f*(float)(1<<Gscale)); + //if(Mscale == 0) pc.printf("Magnetometer resolution = 14 bits\n\r"); +// if(Mscale == 1) pc.printf("Magnetometer resolution = 16 bits\n\r"); +// if(Mmode == 2) pc.printf("Magnetometer ODR = 8 Hz\n\r"); +// if(Mmode == 6) pc.printf("Magnetometer ODR = 100 Hz\n\r"); +// wait(1); + } + else + { + pc.printf("Could not connect to MPU9250: \n\r"); + pc.printf("%#x \n", whoami); + + sprintf(buffer, "WHO_AM_I 0x%x", whoami); + + while(1) ; // Loop forever if communication doesn't happen + } + + mpu9250.getAres(); // Get accelerometer sensitivity + mpu9250.getGres(); // Get gyro sensitivity + mpu9250.getMres(); // Get magnetometer sensitivity +// pc.printf("Accelerometer sensitivity is %f LSB/g \n\r", 1.0f/aRes); +// pc.printf("Gyroscope sensitivity is %f LSB/deg/s \n\r", 1.0f/gRes); +// pc.printf("Magnetometer sensitivity is %f LSB/G \n\r", 1.0f/mRes); +// magbias[0] = +470.; // User environmental x-axis correction in milliGauss, should be automatically calculated +// magbias[1] = +120.; // User environmental x-axis correction in milliGauss +// magbias[2] = +125.; // User environmental x-axis correction in milliGauss + + while(1) { + + // If intPin goes high, all data registers have new data + if(mpu9250.readByte(MPU9250_ADDRESS, INT_STATUS) & 0x01) { // On interrupt, check if data ready interrupt + mpu9250.readAccelData(accelCount); // Read the x/y/z adc values + // Now we'll calculate the accleration value into actual g's + ax = (float)accelCount[0]*aRes - accelBias[0]; // get actual g value, this depends on scale being set + ay = (float)accelCount[1]*aRes - accelBias[1]; + az = (float)accelCount[2]*aRes - accelBias[2]; + + mpu9250.readGyroData(gyroCount); // Read the x/y/z adc values + // Calculate the gyro value into actual degrees per second + gx = (float)gyroCount[0]*gRes - gyroBias[0]; // get actual gyro value, this depends on scale being set + gy = (float)gyroCount[1]*gRes - gyroBias[1]; + gz = (float)gyroCount[2]*gRes - gyroBias[2]; + + mpu9250.readMagData(magCount); // Read the x/y/z adc values + // Calculate the magnetometer values in milliGauss + // Include factory calibration per data sheet and user environmental corrections + if (magCount[0] > magbias_max[0]) magbias_max[0] = magCount[0]; + if (magCount[1] > magbias_max[1]) magbias_max[1] = magCount[1]; + if (magCount[2] > magbias_max[2]) magbias_max[2] = magCount[2]; + + if (magCount[0] < magbias_min[0]) magbias_min[0] = magCount[0]; + if (magCount[1] < magbias_min[1]) magbias_min[1] = magCount[1]; + if (magCount[2] < magbias_min[2]) magbias_min[2] = magCount[2]; + + // set offset value to shift in the middle (max. + min.) / 2 + magbias[0] = ((magbias_max[0] + magbias_min[0])/2); // User environmental x-axis correction in milliGauss, should be automatically calculated + magbias[1] = ((magbias_max[1] + magbias_min[1])/2); // User environmental x-axis correction in milliGauss + magbias[2] = ((magbias_max[2] + magbias_min[2])/2); // User environmental x-axis correction in milliGauss + + + // Calculate the magnetometer values in milliGauss + // Include factory calibration per data sheet and user environmental corrections + mx = (float)(magCount[0]- magbias[0])*mRes*magCalibration[0] ; // get actual magnetometer value, this depends on scale being set + my = (float)(magCount[1]- magbias[1])*mRes*magCalibration[1] ; + mz = (float)(magCount[2]- magbias[2])*mRes*magCalibration[2] ; + } +// mpu9250.MadgwickQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); + mpu9250.MahonyQuaternionUpdate(ax, ay, az, gx*PI/180.0f, gy*PI/180.0f, gz*PI/180.0f, my, mx, mz); + +// pc.printf("ax = %.3f", ax); +// pc.printf(" ay = %.3f", ay); +// pc.printf(" az = %.3f \n\r", az); +// pc.printf("gx = %.3f", gx); +// pc.printf(" gy = %.3f", gy); +// pc.printf(" gz = %.3f deg/s\n\r", gz); +// pc.printf("mx = %.3f", mx / 1000); +// pc.printf(" my = %.3f", my / 1000); +// pc.printf(" mz = %.3f \n\n\r", mz / 1000); + pitchAngle = atan2f(ay ,az) * 180/PI; + if(pitchAngle <= 0) + { + pitchAngle = (pitchAngle + 180) + 180; + } + rollAngle = atan2f(-ax,ay*sinf(pitchAngle_rad)+az*cosf(pitchAngle_rad/ 180)) * 180/PI; + pitchAngle_rad = pitchAngle * PI/180; + rollAngle_rad = rollAngle * PI/180; +// mx = mz*sinf(rollAngle_rad) - my*cosf(rollAngle_rad); +// my = mx*cosf(pitchAngle_rad) + my*sinf(pitchAngle_rad)*sinf(rollAngle_rad) + mz*sinf(pitchAngle_rad)*cosf(rollAngle_rad); + yawAngle = atan2f(my,mx) * 180/PI; +// pc.printf(" yawAngle = %.1f \n\n\r", yawAngle); + pc.printf(" PitchAngle , RollAngle , YawAngle = %.1f %.1f %.1f \n\r", pitchAngle , rollAngle , yawAngle); + wait_ms(100); + bt.putc(pitchAngle+rollAngle); +// bt.putc(rollAngle); +} +} +