Added support for the WNC M14A2A Cellular LTE Data Module.
Dependencies: WNC14A2AInterface
Easy Connect
Easily add all supported connectivity methods to your mbed OS project
This project is derived from https://developer.mbed.org/teams/sandbox/code/simple-mbed-client-example/file/dd6231df71bb/easy-connect.lib. It give user the ability to switch between connectivity methods and includes support for the WNC14A2A Data Module. The `NetworkInterface` API makes this easy, but you still need a mechanism for the user to select the connection method, The selection is made by modifying the `mbed_app.json` file and using `easy_connect()` from your application.
Specifying connectivity method
To add support for the WNC14A2A, add the following to your ``mbed_app.json`` file:
mbed_app.json
{
"config": {
"network-interface":{
"help": "options are ETHERNET,WIFI_ESP8266,WIFI_ODIN,MESH_LOWPAN_ND,MESH_THREAD,WNC14A2A",
"value": "WNC14A2A"
}
},
}
After you choose `WNC14A2A` you'll also need to indicate if you want debug output or not by Enabling (true) or Disabling (false) WNC_DEBUG.
If WNC_DEBUG is enabled, there are 3 different levels of debug output (selected via bit settings). These debug levels are set using the following values:
| Value | Description |
|---|---|
| 1 | Basic WNC driver debug output |
| 2 | Comprehensive WNC driver debug output |
| 4 | Network Layer debug output |
You can have any combination of these three bit values for a total value of 0 – 7.
WNC Debug Settings
"config": {
"WNC_DEBUG": {
"value": false
},
"WNC_DEBUG_SETTING": {
"value": 4
},
}
Using Easy Connect from your application
Easy Connect has just one function which will either return a `NetworkInterface`-pointer or `NULL`:
Sample Code
#include "easy-connect.h"
int main(int, char**) {
NetworkInterface* network = easy_connect(true); /* has 1 argument, enable_logging (pass in true to log to serial port) */
if (!network) {
printf("Connecting to the network failed... See serial output.\r\n");
return 1;
}
// Rest of your program
}
Tested on
- K64F with Ethernet.
- AT&T Cellular IoT Starter Kit with WNC M14A2A Cellular Data Module
The WNCInterface class currently supports the following version(s):
- MPSS: M14A2A_v11.50.164451 APSS: M14A2A_v11.53.164451
License
This library is released under the Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License and may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
stm-spirit1-rf-driver/source/libs/spirit1/SPIRIT1_Library/Src/SPIRIT_Management.c
- Committer:
- group-Avnet
- Date:
- 2017-04-19
- Revision:
- 0:478cfd88041f
File content as of revision 0:478cfd88041f:
/**
******************************************************************************
* @file SPIRIT_Management.c
* @author VMA division - AMS
* @version 3.2.2
* @date 08-July-2015
* @brief The management layer for SPIRIT1 library.
* @details
*
* @attention
*
* <h2><center>© COPYRIGHT(c) 2015 STMicroelectronics</center></h2>
*
* Redistribution and use in source and binary forms, with or without modification,
* are permitted provided that the following conditions are met:
* 1. Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
* 3. Neither the name of STMicroelectronics nor the names of its contributors
* may be used to endorse or promote products derived from this software
* without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
* SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "SPIRIT_Management.h"
/**
* @addtogroup SPIRIT_Libraries
* @{
*/
/**
* @defgroup SPIRIT_MANAGEMENT SPIRIT Management
* @{
*/
/**
* @brief BS value to write in the SYNT0 register according to the selected band
*/
static const uint8_t s_vectcBandRegValue[4]={SYNT0_BS_6, SYNT0_BS_12, SYNT0_BS_16, SYNT0_BS_32};
#define COMMUNICATION_STATE_TX 0
#define COMMUNICATION_STATE_RX 1
#define COMMUNICATION_STATE_NONE 2
static uint32_t s_nDesiredFrequency;
static volatile uint8_t s_cCommunicationState = COMMUNICATION_STATE_NONE;
/**
* @brief Factor is: B/2 used in the formula for SYNTH word calculation
*/
static const uint8_t s_vectcBHalfFactor[4]={(HIGH_BAND_FACTOR/2), (MIDDLE_BAND_FACTOR/2), (LOW_BAND_FACTOR/2), (VERY_LOW_BAND_FACTOR/2)};
/**
* @defgroup SPIRIT_MANAGEMENT_FUNCTIONS SPIRIT Management Functions
* @{
*/
/**
* @defgroup WORKAROUND_FUNCTIONS SPIRIT Management Workaround Functions
* @{
*/
/**
* @brief Private SpiritRadioSetFrequencyBase function only used in SpiritManagementWaVcoCalibration.
* @param lFBase the base carrier frequency expressed in Hz as unsigned word.
* @retval None.
*/
void SpiritManagementSetFrequencyBase(uint32_t lFBase)
{
uint32_t synthWord, Fc;
uint8_t band = 0, anaRadioRegArray[4], wcp;
/* Check the parameter */
s_assert_param(IS_FREQUENCY_BAND(lFBase));
/* Search the operating band */
if(IS_FREQUENCY_BAND_HIGH(lFBase))
{
band = HIGH_BAND;
}
else if(IS_FREQUENCY_BAND_MIDDLE(lFBase))
{
band = MIDDLE_BAND;
}
else if(IS_FREQUENCY_BAND_LOW(lFBase))
{
band = LOW_BAND;
}
else if(IS_FREQUENCY_BAND_VERY_LOW(lFBase))
{
band = VERY_LOW_BAND;
}
int32_t FOffset = SpiritRadioGetFrequencyOffset();
uint32_t lChannelSpace = SpiritRadioGetChannelSpace();
uint8_t cChannelNum = SpiritRadioGetChannel();
/* Calculates the channel center frequency */
Fc = lFBase + FOffset + lChannelSpace*cChannelNum;
/* Reads the reference divider */
uint8_t cRefDiv = (uint8_t)SpiritRadioGetRefDiv()+1;
switch(band)
{
case VERY_LOW_BAND:
if(Fc<161281250)
{
SpiritCalibrationSelectVco(VCO_L);
}
else
{
SpiritCalibrationSelectVco(VCO_H);
}
break;
case LOW_BAND:
if(Fc<322562500)
{
SpiritCalibrationSelectVco(VCO_L);
}
else
{
SpiritCalibrationSelectVco(VCO_H);
}
break;
case MIDDLE_BAND:
if(Fc<430083334)
{
SpiritCalibrationSelectVco(VCO_L);
}
else
{
SpiritCalibrationSelectVco(VCO_H);
}
break;
case HIGH_BAND:
if(Fc<860166667)
{
SpiritCalibrationSelectVco(VCO_L);
}
else
{
SpiritCalibrationSelectVco(VCO_H);
}
}
/* Search the VCO charge pump word and set the corresponding register */
wcp = SpiritRadioSearchWCP(Fc);
synthWord = (uint32_t)(lFBase*(((double)(FBASE_DIVIDER*cRefDiv*s_vectcBHalfFactor[band]))/SpiritRadioGetXtalFrequency()));
/* Build the array of registers values for the analog part */
anaRadioRegArray[0] = (uint8_t)(((synthWord>>21)&(0x0000001F))|(wcp<<5));
anaRadioRegArray[1] = (uint8_t)((synthWord>>13)&(0x000000FF));
anaRadioRegArray[2] = (uint8_t)((synthWord>>5)&(0x000000FF));
anaRadioRegArray[3] = (uint8_t)(((synthWord&0x0000001F)<<3)| s_vectcBandRegValue[band]);
/* Configures the needed Analog Radio registers */
g_xStatus = SpiritSpiWriteRegisters(SYNT3_BASE, 4, anaRadioRegArray);
}
uint8_t SpiritManagementWaVcoCalibration(void)
{
uint8_t s_cVcoWordRx;
uint8_t s_cVcoWordTx;
uint32_t nFreq;
uint8_t cRestore = 0;
uint8_t cStandby = 0;
uint32_t xtal_frequency = SpiritRadioGetXtalFrequency();
/* Enable the reference divider if the XTAL is between 48 and 52 MHz */
if(xtal_frequency>DOUBLE_XTAL_THR)
{
if(!SpiritRadioGetRefDiv())
{
cRestore = 1;
nFreq = SpiritRadioGetFrequencyBase();
SpiritRadioSetRefDiv(S_ENABLE);
SpiritManagementSetFrequencyBase(nFreq);
}
}
nFreq = SpiritRadioGetFrequencyBase();
/* Increase the VCO current */
uint8_t tmp = 0x19; SpiritSpiWriteRegisters(0xA1,1,&tmp);
SpiritCalibrationVco(S_ENABLE);
SpiritRefreshStatus();
if(g_xStatus.MC_STATE == MC_STATE_STANDBY)
{
cStandby = 1;
SpiritCmdStrobeReady();
do{
SpiritRefreshStatus();
if(g_xStatus.MC_STATE == 0x13)
{
return 1;
}
}while(g_xStatus.MC_STATE != MC_STATE_READY);
}
SpiritCmdStrobeLockTx();
do{
SpiritRefreshStatus();
if(g_xStatus.MC_STATE == 0x13)
{
return 1;
}
}while(g_xStatus.MC_STATE != MC_STATE_LOCK);
s_cVcoWordTx = SpiritCalibrationGetVcoCalData();
SpiritCmdStrobeReady();
do{
SpiritRefreshStatus();
}while(g_xStatus.MC_STATE != MC_STATE_READY);
SpiritCmdStrobeLockRx();
do{
SpiritRefreshStatus();
if(g_xStatus.MC_STATE == 0x13)
{
return 1;
}
}while(g_xStatus.MC_STATE != MC_STATE_LOCK);
s_cVcoWordRx = SpiritCalibrationGetVcoCalData();
SpiritCmdStrobeReady();
do{
SpiritRefreshStatus();
if(g_xStatus.MC_STATE == 0x13)
{
return 1;
}
}while(g_xStatus.MC_STATE != MC_STATE_READY);
if(cStandby == 1)
{
SpiritCmdStrobeStandby();
}
SpiritCalibrationVco(S_DISABLE);
/* Disable the reference divider if the XTAL is between 48 and 52 MHz */
if(cRestore)
{
SpiritRadioSetRefDiv(S_DISABLE);
SpiritManagementSetFrequencyBase(nFreq);
}
/* Restore the VCO current */
tmp = 0x11; SpiritSpiWriteRegisters(0xA1,1,&tmp);
SpiritCalibrationSetVcoCalDataTx(s_cVcoWordTx);
SpiritCalibrationSetVcoCalDataRx(s_cVcoWordRx);
return 0;
}
void SpiritManagementWaCmdStrobeTx(void)
{
if(s_cCommunicationState != COMMUNICATION_STATE_TX)
{
//uint32_t xtal_frequency = SpiritRadioGetXtalFrequency();
/* To achive the max output power */
if(s_nDesiredFrequency>=150000000 && s_nDesiredFrequency<=470000000)
{
/* Optimal setting for Tx mode only */
SpiritRadioSetPACwc(LOAD_3_6_PF);
}
else
{
/* Optimal setting for Tx mode only */
SpiritRadioSetPACwc(LOAD_0_PF);
}
uint8_t tmp = 0x11; SpiritSpiWriteRegisters(0xa9, 1, &tmp); /* Enable VCO_L buffer */
tmp = 0x20; SpiritSpiWriteRegisters(PM_CONFIG1_BASE, 1, &tmp); /* Set SMPS switching frequency */
s_cCommunicationState = COMMUNICATION_STATE_TX;
}
}
void SpiritManagementWaCmdStrobeRx(void)
{
if(s_cCommunicationState != COMMUNICATION_STATE_RX)
{
uint8_t tmp = 0x98; SpiritSpiWriteRegisters(PM_CONFIG1_BASE, 1, &tmp); /* Set SMPS switching frequency */
SpiritRadioSetPACwc(LOAD_0_PF); /* Set the correct CWC parameter */
s_cCommunicationState = COMMUNICATION_STATE_RX;
}
}
void SpiritManagementWaTRxFcMem(uint32_t nDesiredFreq)
{
s_cCommunicationState = COMMUNICATION_STATE_NONE;
s_nDesiredFrequency = nDesiredFreq;
}
void SpiritManagementWaExtraCurrent(void)
{
uint8_t tmp= 0xCA;SpiritSpiWriteRegisters(0xB2, 1, &tmp);
tmp= 0x04;SpiritSpiWriteRegisters(0xA8, 1, &tmp);
/* just a read to loose some microsecs more */
SpiritSpiReadRegisters(0xA8, 1, &tmp);
tmp= 0x00;SpiritSpiWriteRegisters(0xA8, 1, &tmp);
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/******************* (C) COPYRIGHT 2015 STMicroelectronics *****END OF FILE****/
Avnet ATT WNC 14A2A Cellular IoT Kit