CN0396 (4-Wire Electrochemical Dual Toxic Gas Sensing System)
Dependencies: AD5270 AD7798 ADT7310
For additional information check out the mbed page of the Analog Devices wiki: https://wiki.analog.com/resources/tools-software/mbed-drivers-all
CN0396.cpp
- Committer:
- adisuciu
- Date:
- 2016-11-07
- Revision:
- 0:ef85449aa57f
- Child:
- 1:024253f170c3
File content as of revision 0:ef85449aa57f:
#include "AD5270.h"
#include <math.h>
#include "CN0396.h"
#define ADC_GAIN AD7798_GAIN_1
#define ADC_SPS 0x05 //50SPS
#define CO_SENS (75 * pow(10, -9)) /* Sensitivity nA/ppm in 400ppm CO 50 to 100 */
#define CO_RANGE 1000 /* Range ppm CO limit of performance warranty 1,000 */
#define H2S_SENS (700 * pow(10, -9)) /* Sensitivity nA/ppm in 20ppm H2S 450 to 900 */
#define H2S_RANGE 100 /* Range ppm H2S limit of performance warranty 100 */
/* CO side H2S side
Temperature Mean Mean*/
extern Serial pc;
CN0396::CN0396(PinName csad, PinName csrdac, PinName cstemp) :
csad(csad), csrdac(csrdac), cstemp(cstemp), ad(csad), rdac(csrdac), temp(cstemp)
{
}
void CN0396::data_to_voltage(uint16_t adcValue, float *voltage, int gain_adc)
{
*voltage = (float)(adcValue * V_REF) / (float)(_2_16 * gain_adc);
}
void CN0396::data_to_voltage_bipolar(uint16_t adcValue, float *voltage, int gain_adc)
{
*voltage = ((static_cast<float>(adcValue) / _2_15) - 1.0) * (V_REF / static_cast<float>(gain_adc));
}
float CN0396::get_feedback_resistor_value(float sensitivity, float range)
{
return 1.2 / (sensitivity * range);
}
void CN0396::configure_feedback_resistors(float resistance1, float resistance2)
{
uint16_t R1 = rdac.calc_RDAC(resistance1);
uint16_t R2 = rdac.calc_RDAC(resistance2);
csrdac = false;
rdac.write_cmd(AD5270::WRITE_CTRL_REG, AD5270::RDAC_WRITE_PROTECT, false); // RDAC register write protect - allow update of wiper position through digital interface
rdac.write_cmd(AD5270::WRITE_CTRL_REG, AD5270::RDAC_WRITE_PROTECT, false); // RDAC register write protect - allow update of wiper position through digital interface
csrdac = true;
wait_us(2);
csrdac = false;
rdac.write_cmd(AD5270::WRITE_RDAC, R2, false); // write data to the RDAC register
rdac.write_cmd(AD5270::WRITE_RDAC, R1, false); // write data to the RDAC register
csrdac = true;
wait_us(2);
csrdac = false;
rdac.write_cmd(AD5270::WRITE_CTRL_REG, 0, false); // RDAC register write protect - allow update of wiper position through digital interface
rdac.write_cmd(AD5270::WRITE_CTRL_REG, 0, false); // RDAC register write protect - allow update of wiper position through digital interface
csrdac = false;
wait_us(2);
csrdac = false;
rdac.write_reg(AD5270::HI_Z_Cmd, false);
rdac.write_reg(AD5270::HI_Z_Cmd, false);
csrdac = true;
wait_us(2);
csrdac = false;
rdac.write_reg(AD5270::NO_OP_cmd, false);
rdac.write_reg(AD5270::NO_OP_cmd, false);
csrdac = true;
}
void CN0396::init()
{
// set rdac
pc.printf("Computing resistor values \r\n");
resistance1 = get_feedback_resistor_value(CO_SENS, CO_RANGE );
resistance0 = get_feedback_resistor_value(H2S_SENS, H2S_RANGE);
pc.printf("R1 = %f\r\nR2=%f\r\n", resistance0, resistance1);
pc.printf("Configuring feedback resistors\r\n");
configure_feedback_resistors(resistance1, resistance1);
pc.printf("Done\r\n");
// config temp
pc.printf("Configuring temperature sensor\r\n");
temp.reset();
temp.write_config(0x90);
pc.printf("Done\r\n");
pc.printf("Configuring ADC\r\n");
ad.reset();
if(ad.init()) {
ad.set_coding_mode(AD7798_UNIPOLAR);
ad.set_mode(AD7798_MODE_SINGLE);
ad.set_gain(ADC_GAIN);
ad.set_filter(ADC_SPS);
ad.set_reference(AD7798_REFDET_ENA);
pc.printf("ADC Config succesful\r\n");
} else {
pc.printf("ADC Config failed\r\n");
}
}
float CN0396::compensate_ppm(float result, float temp, sensor_type_t sensor)
{
for(uint8_t i = 1; i < COMPENSATION_TABLE_SIZE; i++) {
if(temp < ppm_compensation[i].temp && temp > ppm_compensation[i - 1].temp) {
float compensation_coef;
if(sensor == H2S_SENSOR) {
compensation_coef = (((temp - (ppm_compensation[i - 1].temp )) * (ppm_compensation[i].H2S_percent - ppm_compensation[i - 1].H2S_percent)) / (ppm_compensation[i].temp - ppm_compensation[i - 1].temp)) + ppm_compensation[i - 1].H2S_percent;
} else {
compensation_coef = (((temp - (ppm_compensation[i - 1].temp )) * (ppm_compensation[i].CO_percent - ppm_compensation[i - 1].CO_percent)) / (ppm_compensation[i].temp - ppm_compensation[i - 1].temp)) + ppm_compensation[i - 1].CO_percent;
}
return (result * compensation_coef) / 100.0;
}
}
}
void CN0396::read()
{
uint16_t data0, data1;
// read temperature
uint16_t temp_data = temp.read_temp();
float temp = 0;
if(temp_data & 0x8000) {
temp = (temp_data - 65536) / (128.0);
} else {
temp = temp_data / (128.0);
}
// read channels
ad.set_channel(0);
ad.read_data(0, &data0);
float volt0;
data_to_voltage(data0, &volt0);
float result0 = (volt0 / resistance0) / CO_SENS;
ad.set_channel(1);
ad.read_data(1, &data1);
float volt1;
data_to_voltage(data1, &volt1);
float result1 = (volt1 / resistance1) / H2S_SENS;
// compute ppm based on formula
// return ppm
result0 = compensate_ppm(result0, temp, CO_SENSOR);
result1 = compensate_ppm(result1, temp, H2S_SENSOR);
pc.printf("%f %f %f \r\n", temp, result0, result1);
}