LMIC lib Lora OTA device for Everynet

Fork of LMiC-10secs by Alcatel-Lucent IoT Development

Committer:
mluis
Date:
Thu Jan 22 12:50:49 2015 +0000
Revision:
0:62d1edcc13d1
Child:
1:d3b7bde3995c
Porting of IBM LoRa MAC in C (LMiC) to the mbed platform.

Who changed what in which revision?

UserRevisionLine numberNew contents of line
mluis 0:62d1edcc13d1 1 /*******************************************************************************
mluis 0:62d1edcc13d1 2 * Copyright (c) 2014 IBM Corporation.
mluis 0:62d1edcc13d1 3 * All rights reserved. This program and the accompanying materials
mluis 0:62d1edcc13d1 4 * are made available under the terms of the Eclipse Public License v1.0
mluis 0:62d1edcc13d1 5 * which accompanies this distribution, and is available at
mluis 0:62d1edcc13d1 6 * http://www.eclipse.org/legal/epl-v10.html
mluis 0:62d1edcc13d1 7 *
mluis 0:62d1edcc13d1 8 * Contributors:
mluis 0:62d1edcc13d1 9 * IBM Zurich Research Lab - initial API, implementation and documentation
mluis 0:62d1edcc13d1 10 * Semtech Apps Team - Modified to support the MBED sx1276 driver
mluis 0:62d1edcc13d1 11 * library.
mluis 0:62d1edcc13d1 12 * Possibility to use original or Semtech's MBED
mluis 0:62d1edcc13d1 13 * radio driver. The selection is done by setting
mluis 0:62d1edcc13d1 14 * USE_SMTC_RADIO_DRIVER preprocessing directive
mluis 0:62d1edcc13d1 15 * in lmic.h
mluis 0:62d1edcc13d1 16 *******************************************************************************/
mluis 0:62d1edcc13d1 17 #include "lmic.h"
mluis 0:62d1edcc13d1 18
mluis 0:62d1edcc13d1 19 #if USE_SMTC_RADIO_DRIVER
mluis 0:62d1edcc13d1 20 #include "sx1276-hal.h"
mluis 0:62d1edcc13d1 21
mluis 0:62d1edcc13d1 22 /*!
mluis 0:62d1edcc13d1 23 * Syncword for lora networks (nibbles swapped)
mluis 0:62d1edcc13d1 24 */
mluis 0:62d1edcc13d1 25 #define LORA_MAC_SYNCWORD 0x34
mluis 0:62d1edcc13d1 26
mluis 0:62d1edcc13d1 27 /*
mluis 0:62d1edcc13d1 28 * Callback functions prototypes
mluis 0:62d1edcc13d1 29 */
mluis 0:62d1edcc13d1 30 /*!
mluis 0:62d1edcc13d1 31 * @brief Function to be executed on Radio Tx Done event
mluis 0:62d1edcc13d1 32 */
mluis 0:62d1edcc13d1 33 void OnTxDone( void );
mluis 0:62d1edcc13d1 34
mluis 0:62d1edcc13d1 35 /*!
mluis 0:62d1edcc13d1 36 * @brief Function to be executed on Radio Rx Done event
mluis 0:62d1edcc13d1 37 */
mluis 0:62d1edcc13d1 38 void OnRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr );
mluis 0:62d1edcc13d1 39
mluis 0:62d1edcc13d1 40 /*!
mluis 0:62d1edcc13d1 41 * @brief Function executed on Radio Tx Timeout event
mluis 0:62d1edcc13d1 42 */
mluis 0:62d1edcc13d1 43 void OnTxTimeout( void );
mluis 0:62d1edcc13d1 44
mluis 0:62d1edcc13d1 45 /*!
mluis 0:62d1edcc13d1 46 * @brief Function executed on Radio Rx Timeout event
mluis 0:62d1edcc13d1 47 */
mluis 0:62d1edcc13d1 48 void OnRxTimeout( void );
mluis 0:62d1edcc13d1 49
mluis 0:62d1edcc13d1 50 /*!
mluis 0:62d1edcc13d1 51 * @brief Function executed on Radio Rx Error event
mluis 0:62d1edcc13d1 52 */
mluis 0:62d1edcc13d1 53 void OnRxError( void );
mluis 0:62d1edcc13d1 54
mluis 0:62d1edcc13d1 55 /*!
mluis 0:62d1edcc13d1 56 * @brief Function executed on Radio Fhss Change Channel event
mluis 0:62d1edcc13d1 57 */
mluis 0:62d1edcc13d1 58 void OnFhssChangeChannel( uint8_t channelIndex );
mluis 0:62d1edcc13d1 59
mluis 0:62d1edcc13d1 60 /*!
mluis 0:62d1edcc13d1 61 * @brief Function executed on CAD Done event
mluis 0:62d1edcc13d1 62 */
mluis 0:62d1edcc13d1 63 void OnCadDone( void );
mluis 0:62d1edcc13d1 64
mluis 0:62d1edcc13d1 65 /*
mluis 0:62d1edcc13d1 66 * Radio object declraration
mluis 0:62d1edcc13d1 67 */
mluis 0:62d1edcc13d1 68 SX1276MB1xAS Radio( OnTxDone, OnTxTimeout, OnRxDone, OnRxTimeout, OnRxError, NULL, NULL );
mluis 0:62d1edcc13d1 69
mluis 0:62d1edcc13d1 70 static const u2_t LORA_RXDONE_FIXUP[] = {
mluis 0:62d1edcc13d1 71 [FSK] = us2osticks(0), // ( 0 ticks)
mluis 0:62d1edcc13d1 72 [SF7] = us2osticks(0), // ( 0 ticks)
mluis 0:62d1edcc13d1 73 [SF8] = us2osticks(1648), // ( 54 ticks)
mluis 0:62d1edcc13d1 74 [SF9] = us2osticks(3265), // ( 107 ticks)
mluis 0:62d1edcc13d1 75 [SF10] = us2osticks(7049), // ( 231 ticks)
mluis 0:62d1edcc13d1 76 [SF11] = us2osticks(13641), // ( 447 ticks)
mluis 0:62d1edcc13d1 77 [SF12] = us2osticks(31189), // (1022 ticks)
mluis 0:62d1edcc13d1 78 };
mluis 0:62d1edcc13d1 79
mluis 0:62d1edcc13d1 80 void OnTxDone( void )
mluis 0:62d1edcc13d1 81 {
mluis 0:62d1edcc13d1 82 ostime_t now = os_getTime( );
mluis 0:62d1edcc13d1 83 // save exact tx time
mluis 0:62d1edcc13d1 84 LMIC.txend = now - us2osticks( 43 ); // TXDONE FIXUP
mluis 0:62d1edcc13d1 85
mluis 0:62d1edcc13d1 86 // go from stanby to sleep
mluis 0:62d1edcc13d1 87 Radio.Sleep( );
mluis 0:62d1edcc13d1 88 // run os job (use preset func ptr)
mluis 0:62d1edcc13d1 89 os_setCallback( &LMIC.osjob, LMIC.osjob.func );
mluis 0:62d1edcc13d1 90 }
mluis 0:62d1edcc13d1 91
mluis 0:62d1edcc13d1 92 void OnRxDone( uint8_t *payload, uint16_t size, int16_t rssi, int8_t snr )
mluis 0:62d1edcc13d1 93 {
mluis 0:62d1edcc13d1 94 ostime_t now = os_getTime( );
mluis 0:62d1edcc13d1 95 // save exact rx time
mluis 0:62d1edcc13d1 96 LMIC.rxtime = now - LORA_RXDONE_FIXUP[getSf( LMIC.rps )];
mluis 0:62d1edcc13d1 97 // read the PDU and inform the MAC that we received something
mluis 0:62d1edcc13d1 98 LMIC.dataLen = size;
mluis 0:62d1edcc13d1 99 // now read the FIFO
mluis 0:62d1edcc13d1 100 memcpy( LMIC.frame, payload, size );
mluis 0:62d1edcc13d1 101 // read rx quality parameters
mluis 0:62d1edcc13d1 102 LMIC.rxq.snr = snr; // SNR [dB] * 4
mluis 0:62d1edcc13d1 103 LMIC.rxq.rssi = rssi; // RSSI [dBm] (-196...+63)
mluis 0:62d1edcc13d1 104
mluis 0:62d1edcc13d1 105 // go from stanby to sleep
mluis 0:62d1edcc13d1 106 Radio.Sleep( );
mluis 0:62d1edcc13d1 107 // run os job (use preset func ptr)
mluis 0:62d1edcc13d1 108 os_setCallback( &LMIC.osjob, LMIC.osjob.func );
mluis 0:62d1edcc13d1 109 }
mluis 0:62d1edcc13d1 110
mluis 0:62d1edcc13d1 111 void OnTxTimeout( void )
mluis 0:62d1edcc13d1 112 {
mluis 0:62d1edcc13d1 113 ostime_t now = os_getTime( );
mluis 0:62d1edcc13d1 114
mluis 0:62d1edcc13d1 115 // indicate error
mluis 0:62d1edcc13d1 116
mluis 0:62d1edcc13d1 117 // go from stanby to sleep
mluis 0:62d1edcc13d1 118 Radio.Sleep( );
mluis 0:62d1edcc13d1 119 // run os job (use preset func ptr)
mluis 0:62d1edcc13d1 120 os_setCallback( &LMIC.osjob, LMIC.osjob.func );
mluis 0:62d1edcc13d1 121 }
mluis 0:62d1edcc13d1 122
mluis 0:62d1edcc13d1 123 void OnRxTimeout( void )
mluis 0:62d1edcc13d1 124 {
mluis 0:62d1edcc13d1 125 ostime_t now = os_getTime( );
mluis 0:62d1edcc13d1 126 // indicate timeout
mluis 0:62d1edcc13d1 127 LMIC.dataLen = 0;
mluis 0:62d1edcc13d1 128
mluis 0:62d1edcc13d1 129 // go from stanby to sleep
mluis 0:62d1edcc13d1 130 Radio.Sleep( );
mluis 0:62d1edcc13d1 131 // run os job (use preset func ptr)
mluis 0:62d1edcc13d1 132 os_setCallback( &LMIC.osjob, LMIC.osjob.func );
mluis 0:62d1edcc13d1 133 }
mluis 0:62d1edcc13d1 134
mluis 0:62d1edcc13d1 135 void OnRxError( void )
mluis 0:62d1edcc13d1 136 {
mluis 0:62d1edcc13d1 137 ostime_t now = os_getTime( );
mluis 0:62d1edcc13d1 138
mluis 0:62d1edcc13d1 139 // indicate error
mluis 0:62d1edcc13d1 140 LMIC.dataLen = 0;
mluis 0:62d1edcc13d1 141
mluis 0:62d1edcc13d1 142 // go from stanby to sleep
mluis 0:62d1edcc13d1 143 Radio.Sleep( );
mluis 0:62d1edcc13d1 144 // run os job (use preset func ptr)
mluis 0:62d1edcc13d1 145 os_setCallback( &LMIC.osjob, LMIC.osjob.func );
mluis 0:62d1edcc13d1 146 }
mluis 0:62d1edcc13d1 147
mluis 0:62d1edcc13d1 148 /*!
mluis 0:62d1edcc13d1 149 * LMIC API implementation
mluis 0:62d1edcc13d1 150 */
mluis 0:62d1edcc13d1 151 // RADIO STATE
mluis 0:62d1edcc13d1 152 // (initialized by radio_init( ), used by radio_rand1( ))
mluis 0:62d1edcc13d1 153 static u1_t randbuf[16];
mluis 0:62d1edcc13d1 154
mluis 0:62d1edcc13d1 155 // get random seed from wideband noise rssi
mluis 0:62d1edcc13d1 156 void radio_init( void )
mluis 0:62d1edcc13d1 157 {
mluis 0:62d1edcc13d1 158 hal_disableIRQs( );
mluis 0:62d1edcc13d1 159
mluis 0:62d1edcc13d1 160 // seed 15-byte randomness via noise rssi
mluis 0:62d1edcc13d1 161 // Set LoRa modem ON
mluis 0:62d1edcc13d1 162 Radio.SetModem( MODEM_LORA );
mluis 0:62d1edcc13d1 163 // Disable LoRa modem interrupts
mluis 0:62d1edcc13d1 164 Radio.Write( REG_LR_IRQFLAGSMASK, RFLR_IRQFLAGS_RXTIMEOUT |
mluis 0:62d1edcc13d1 165 RFLR_IRQFLAGS_RXDONE |
mluis 0:62d1edcc13d1 166 RFLR_IRQFLAGS_PAYLOADCRCERROR |
mluis 0:62d1edcc13d1 167 RFLR_IRQFLAGS_VALIDHEADER |
mluis 0:62d1edcc13d1 168 RFLR_IRQFLAGS_TXDONE |
mluis 0:62d1edcc13d1 169 RFLR_IRQFLAGS_CADDONE |
mluis 0:62d1edcc13d1 170 RFLR_IRQFLAGS_FHSSCHANGEDCHANNEL |
mluis 0:62d1edcc13d1 171 RFLR_IRQFLAGS_CADDETECTED );
mluis 0:62d1edcc13d1 172
mluis 0:62d1edcc13d1 173 // Set radio in continuous reception
mluis 0:62d1edcc13d1 174 Radio.Rx( 0 );
mluis 0:62d1edcc13d1 175
mluis 0:62d1edcc13d1 176 for( int i = 1; i < 16; i++ )
mluis 0:62d1edcc13d1 177 {
mluis 0:62d1edcc13d1 178 for( int j = 0; j < 8; j++ )
mluis 0:62d1edcc13d1 179 {
mluis 0:62d1edcc13d1 180 u1_t b; // wait for two non-identical subsequent least-significant bits
mluis 0:62d1edcc13d1 181 while( ( b = Radio.Read( REG_LR_RSSIWIDEBAND ) & 0x01 ) == ( Radio.Read( REG_LR_RSSIWIDEBAND ) & 0x01 ) );
mluis 0:62d1edcc13d1 182 randbuf[i] = ( randbuf[i] << 1 ) | b;
mluis 0:62d1edcc13d1 183 }
mluis 0:62d1edcc13d1 184 }
mluis 0:62d1edcc13d1 185 randbuf[0] = 16; // set initial index
mluis 0:62d1edcc13d1 186
mluis 0:62d1edcc13d1 187 // Change LoRa modem SyncWord
mluis 0:62d1edcc13d1 188 Radio.Write( REG_LR_SYNCWORD, LORA_MAC_SYNCWORD );
mluis 0:62d1edcc13d1 189
mluis 0:62d1edcc13d1 190 Radio.Sleep( );
mluis 0:62d1edcc13d1 191
mluis 0:62d1edcc13d1 192 hal_enableIRQs( );
mluis 0:62d1edcc13d1 193 }
mluis 0:62d1edcc13d1 194
mluis 0:62d1edcc13d1 195 // return next random byte derived from seed buffer
mluis 0:62d1edcc13d1 196 // (buf[0] holds index of next byte to be returned)
mluis 0:62d1edcc13d1 197 u1_t radio_rand1( void )
mluis 0:62d1edcc13d1 198 {
mluis 0:62d1edcc13d1 199 u1_t i = randbuf[0];
mluis 0:62d1edcc13d1 200 ASSERT( i != 0 );
mluis 0:62d1edcc13d1 201 if( i == 16 )
mluis 0:62d1edcc13d1 202 {
mluis 0:62d1edcc13d1 203 os_aes( AES_ENC, randbuf, 16 ); // encrypt seed with any key
mluis 0:62d1edcc13d1 204 i = 0;
mluis 0:62d1edcc13d1 205 }
mluis 0:62d1edcc13d1 206 u1_t v = randbuf[i++];
mluis 0:62d1edcc13d1 207 randbuf[0] = i;
mluis 0:62d1edcc13d1 208 return v;
mluis 0:62d1edcc13d1 209 }
mluis 0:62d1edcc13d1 210
mluis 0:62d1edcc13d1 211 void os_radio( u1_t mode )
mluis 0:62d1edcc13d1 212 {
mluis 0:62d1edcc13d1 213 hal_disableIRQs( );
mluis 0:62d1edcc13d1 214 switch( mode )
mluis 0:62d1edcc13d1 215 {
mluis 0:62d1edcc13d1 216 case RADIO_RST:
mluis 0:62d1edcc13d1 217 // put radio to sleep
mluis 0:62d1edcc13d1 218 Radio.Sleep( );
mluis 0:62d1edcc13d1 219 break;
mluis 0:62d1edcc13d1 220
mluis 0:62d1edcc13d1 221 case RADIO_TX:
mluis 0:62d1edcc13d1 222 // transmit frame now
mluis 0:62d1edcc13d1 223 //ASSERT( Radio.GetState( ) == IDLE );
mluis 0:62d1edcc13d1 224
mluis 0:62d1edcc13d1 225 Radio.SetChannel( LMIC.freq );
mluis 0:62d1edcc13d1 226 if( getSf( LMIC.rps ) == FSK )
mluis 0:62d1edcc13d1 227 { // FSK modem
mluis 0:62d1edcc13d1 228 Radio.SetTxConfig( MODEM_FSK, LMIC.txpow, 25e3, 0, 50e3, 0, 5, false, true, 0, 0, false, 3e6 );
mluis 0:62d1edcc13d1 229 }
mluis 0:62d1edcc13d1 230 else
mluis 0:62d1edcc13d1 231 { // LoRa modem
mluis 0:62d1edcc13d1 232
mluis 0:62d1edcc13d1 233 Radio.SetTxConfig( MODEM_LORA, LMIC.txpow, 0, getBw( LMIC.rps ), getSf( LMIC.rps ) + 6, getCr( LMIC.rps ) + 1, 8, getIh( LMIC.rps ) ? true : false, ( getNocrc(LMIC.rps) == 0 ) ? true : false, 0, 0, false, 3e6 );
mluis 0:62d1edcc13d1 234 }
mluis 0:62d1edcc13d1 235
mluis 0:62d1edcc13d1 236 //starttx( ); // buf=LMIC.frame, len=LMIC.dataLen
mluis 0:62d1edcc13d1 237 Radio.Send( LMIC.frame, LMIC.dataLen );
mluis 0:62d1edcc13d1 238 break;
mluis 0:62d1edcc13d1 239
mluis 0:62d1edcc13d1 240 case RADIO_RX:
mluis 0:62d1edcc13d1 241 // receive frame now (exactly at rxtime)
mluis 0:62d1edcc13d1 242 //ASSERT( Radio.GetState( ) == IDLE );
mluis 0:62d1edcc13d1 243
mluis 0:62d1edcc13d1 244 Radio.SetChannel( LMIC.freq );
mluis 0:62d1edcc13d1 245 if( getSf( LMIC.rps ) == FSK )
mluis 0:62d1edcc13d1 246 { // FSK modem
mluis 0:62d1edcc13d1 247 //Radio.SetRxConfig( MODEM_FSK, 50e3, 50e3, 0, 83.333e3, 5, 0, false, 0, true, 0, 0, false, false );
mluis 0:62d1edcc13d1 248 Radio.SetRxConfig( MODEM_FSK, 50e3, 50e3, 0, 83.333e3, 5, 0, false, 0, true, 0, 0, false, true );
mluis 0:62d1edcc13d1 249 }
mluis 0:62d1edcc13d1 250 else
mluis 0:62d1edcc13d1 251 { // LoRa modem
mluis 0:62d1edcc13d1 252
mluis 0:62d1edcc13d1 253 Radio.SetRxConfig( MODEM_LORA, getBw( LMIC.rps ), getSf( LMIC.rps ) + 6, getCr( LMIC.rps ) + 1, 0, 8, LMIC.rxsyms, getIh( LMIC.rps ) ? true : false, getIh(LMIC.rps), ( getNocrc(LMIC.rps) == 0 ) ? true : false, 0, 0, true, false );
mluis 0:62d1edcc13d1 254 }
mluis 0:62d1edcc13d1 255
mluis 0:62d1edcc13d1 256 // now instruct the radio to receive
mluis 0:62d1edcc13d1 257 hal_waitUntil( LMIC.rxtime ); // busy wait until exact rx time
mluis 0:62d1edcc13d1 258
mluis 0:62d1edcc13d1 259 //startrx( RXMODE_SINGLE ); // buf = LMIC.frame, time = LMIC.rxtime, timeout=LMIC.rxsyms
mluis 0:62d1edcc13d1 260 if( getSf( LMIC.rps ) == FSK )
mluis 0:62d1edcc13d1 261 { // FSK modem
mluis 0:62d1edcc13d1 262 Radio.Rx( 50e3 ); // Max Rx window 50 ms
mluis 0:62d1edcc13d1 263 }
mluis 0:62d1edcc13d1 264 else
mluis 0:62d1edcc13d1 265 { // LoRa modem
mluis 0:62d1edcc13d1 266 Radio.Rx( 3e6 ); // Max Rx window 3 seconds
mluis 0:62d1edcc13d1 267 }
mluis 0:62d1edcc13d1 268 break;
mluis 0:62d1edcc13d1 269
mluis 0:62d1edcc13d1 270 case RADIO_RXON:
mluis 0:62d1edcc13d1 271 // start scanning for beacon now
mluis 0:62d1edcc13d1 272
mluis 0:62d1edcc13d1 273 //ASSERT( Radio.GetState( ) == IDLE );
mluis 0:62d1edcc13d1 274
mluis 0:62d1edcc13d1 275 Radio.SetChannel( LMIC.freq );
mluis 0:62d1edcc13d1 276 if( getSf( LMIC.rps ) == FSK )
mluis 0:62d1edcc13d1 277 { // FSK modem
mluis 0:62d1edcc13d1 278 Radio.SetRxConfig( MODEM_FSK, 50e3, 50e3, 0, 83.333e3, 5, 0, false, 0, true, 0, 0, false, true );
mluis 0:62d1edcc13d1 279 }
mluis 0:62d1edcc13d1 280 else
mluis 0:62d1edcc13d1 281 { // LoRa modem
mluis 0:62d1edcc13d1 282 Radio.SetRxConfig( MODEM_LORA, getBw( LMIC.rps ), getSf( LMIC.rps ) + 6, getCr( LMIC.rps ) + 1, 0, 8, LMIC.rxsyms, getIh( LMIC.rps ) ? true : false, getIh(LMIC.rps), ( getNocrc(LMIC.rps) == 0 ) ? true : false, 0, 0, true, true );
mluis 0:62d1edcc13d1 283 }
mluis 0:62d1edcc13d1 284
mluis 0:62d1edcc13d1 285 //startrx( RXMODE_SCAN) ; // buf = LMIC.frame
mluis 0:62d1edcc13d1 286 Radio.Rx( 0 );
mluis 0:62d1edcc13d1 287 break;
mluis 0:62d1edcc13d1 288 }
mluis 0:62d1edcc13d1 289 hal_enableIRQs( );
mluis 0:62d1edcc13d1 290 }
mluis 0:62d1edcc13d1 291
mluis 0:62d1edcc13d1 292 #else
mluis 0:62d1edcc13d1 293
mluis 0:62d1edcc13d1 294 // ----------------------------------------
mluis 0:62d1edcc13d1 295 // Registers Mapping
mluis 0:62d1edcc13d1 296 #define RegFifo 0x00 // common
mluis 0:62d1edcc13d1 297 #define RegOpMode 0x01 // common
mluis 0:62d1edcc13d1 298 #define FSKRegBitrateMsb 0x02
mluis 0:62d1edcc13d1 299 #define FSKRegBitrateLsb 0x03
mluis 0:62d1edcc13d1 300 #define FSKRegFdevMsb 0x04
mluis 0:62d1edcc13d1 301 #define FSKRegFdevLsb 0x05
mluis 0:62d1edcc13d1 302 #define RegFrfMsb 0x06 // common
mluis 0:62d1edcc13d1 303 #define RegFrfMid 0x07 // common
mluis 0:62d1edcc13d1 304 #define RegFrfLsb 0x08 // common
mluis 0:62d1edcc13d1 305 #define RegPaConfig 0x09 // common
mluis 0:62d1edcc13d1 306 #define RegPaRamp 0x0A // common
mluis 0:62d1edcc13d1 307 #define RegOcp 0x0B // common
mluis 0:62d1edcc13d1 308 #define RegLna 0x0C // common
mluis 0:62d1edcc13d1 309 #define FSKRegRxConfig 0x0D
mluis 0:62d1edcc13d1 310 #define LORARegFifoAddrPtr 0x0D
mluis 0:62d1edcc13d1 311 #define FSKRegRssiConfig 0x0E
mluis 0:62d1edcc13d1 312 #define LORARegFifoTxBaseAddr 0x0E
mluis 0:62d1edcc13d1 313 #define FSKRegRssiCollision 0x0F
mluis 0:62d1edcc13d1 314 #define LORARegFifoRxBaseAddr 0x0F
mluis 0:62d1edcc13d1 315 #define FSKRegRssiThresh 0x10
mluis 0:62d1edcc13d1 316 #define LORARegFifoRxCurrentAddr 0x10
mluis 0:62d1edcc13d1 317 #define FSKRegRssiValue 0x11
mluis 0:62d1edcc13d1 318 #define LORARegIrqFlagsMask 0x11
mluis 0:62d1edcc13d1 319 #define FSKRegRxBw 0x12
mluis 0:62d1edcc13d1 320 #define LORARegIrqFlags 0x12
mluis 0:62d1edcc13d1 321 #define FSKRegAfcBw 0x13
mluis 0:62d1edcc13d1 322 #define LORARegRxNbBytes 0x13
mluis 0:62d1edcc13d1 323 #define FSKRegOokPeak 0x14
mluis 0:62d1edcc13d1 324 #define LORARegRxHeaderCntValueMsb 0x14
mluis 0:62d1edcc13d1 325 #define FSKRegOokFix 0x15
mluis 0:62d1edcc13d1 326 #define LORARegRxHeaderCntValueLsb 0x15
mluis 0:62d1edcc13d1 327 #define FSKRegOokAvg 0x16
mluis 0:62d1edcc13d1 328 #define LORARegRxPacketCntValueMsb 0x16
mluis 0:62d1edcc13d1 329 #define LORARegRxpacketCntValueLsb 0x17
mluis 0:62d1edcc13d1 330 #define LORARegModemStat 0x18
mluis 0:62d1edcc13d1 331 #define LORARegPktSnrValue 0x19
mluis 0:62d1edcc13d1 332 #define FSKRegAfcFei 0x1A
mluis 0:62d1edcc13d1 333 #define LORARegPktRssiValue 0x1A
mluis 0:62d1edcc13d1 334 #define FSKRegAfcMsb 0x1B
mluis 0:62d1edcc13d1 335 #define LORARegRssiValue 0x1B
mluis 0:62d1edcc13d1 336 #define FSKRegAfcLsb 0x1C
mluis 0:62d1edcc13d1 337 #define LORARegHopChannel 0x1C
mluis 0:62d1edcc13d1 338 #define FSKRegFeiMsb 0x1D
mluis 0:62d1edcc13d1 339 #define LORARegModemConfig1 0x1D
mluis 0:62d1edcc13d1 340 #define FSKRegFeiLsb 0x1E
mluis 0:62d1edcc13d1 341 #define LORARegModemConfig2 0x1E
mluis 0:62d1edcc13d1 342 #define FSKRegPreambleDetect 0x1F
mluis 0:62d1edcc13d1 343 #define LORARegSymbTimeoutLsb 0x1F
mluis 0:62d1edcc13d1 344 #define FSKRegRxTimeout1 0x20
mluis 0:62d1edcc13d1 345 #define LORARegPreambleMsb 0x20
mluis 0:62d1edcc13d1 346 #define FSKRegRxTimeout2 0x21
mluis 0:62d1edcc13d1 347 #define LORARegPreambleLsb 0x21
mluis 0:62d1edcc13d1 348 #define FSKRegRxTimeout3 0x22
mluis 0:62d1edcc13d1 349 #define LORARegPayloadLength 0x22
mluis 0:62d1edcc13d1 350 #define FSKRegRxDelay 0x23
mluis 0:62d1edcc13d1 351 #define LORARegPayloadMaxLength 0x23
mluis 0:62d1edcc13d1 352 #define FSKRegOsc 0x24
mluis 0:62d1edcc13d1 353 #define LORARegHopPeriod 0x24
mluis 0:62d1edcc13d1 354 #define FSKRegPreambleMsb 0x25
mluis 0:62d1edcc13d1 355 #define LORARegFifoRxByteAddr 0x25
mluis 0:62d1edcc13d1 356 #define LORARegModemConfig3 0x26
mluis 0:62d1edcc13d1 357 #define FSKRegPreambleLsb 0x26
mluis 0:62d1edcc13d1 358 #define FSKRegSyncConfig 0x27
mluis 0:62d1edcc13d1 359 #define LORARegFeiMsb 0x28
mluis 0:62d1edcc13d1 360 #define FSKRegSyncValue1 0x28
mluis 0:62d1edcc13d1 361 #define LORAFeiMib 0x29
mluis 0:62d1edcc13d1 362 #define FSKRegSyncValue2 0x29
mluis 0:62d1edcc13d1 363 #define LORARegFeiLsb 0x2A
mluis 0:62d1edcc13d1 364 #define FSKRegSyncValue3 0x2A
mluis 0:62d1edcc13d1 365 #define FSKRegSyncValue4 0x2B
mluis 0:62d1edcc13d1 366 #define LORARegRssiWideband 0x2C
mluis 0:62d1edcc13d1 367 #define FSKRegSyncValue5 0x2C
mluis 0:62d1edcc13d1 368 #define FSKRegSyncValue6 0x2D
mluis 0:62d1edcc13d1 369 #define FSKRegSyncValue7 0x2E
mluis 0:62d1edcc13d1 370 #define FSKRegSyncValue8 0x2F
mluis 0:62d1edcc13d1 371 #define FSKRegPacketConfig1 0x30
mluis 0:62d1edcc13d1 372 #define FSKRegPacketConfig2 0x31
mluis 0:62d1edcc13d1 373 #define LORARegDetectOptimize 0x31
mluis 0:62d1edcc13d1 374 #define FSKRegPayloadLength 0x32
mluis 0:62d1edcc13d1 375 #define FSKRegNodeAdrs 0x33
mluis 0:62d1edcc13d1 376 #define LORARegInvertIQ 0x33
mluis 0:62d1edcc13d1 377 #define FSKRegBroadcastAdrs 0x34
mluis 0:62d1edcc13d1 378 #define FSKRegFifoThresh 0x35
mluis 0:62d1edcc13d1 379 #define FSKRegSeqConfig1 0x36
mluis 0:62d1edcc13d1 380 #define FSKRegSeqConfig2 0x37
mluis 0:62d1edcc13d1 381 #define LORARegDetectionThreshold 0x37
mluis 0:62d1edcc13d1 382 #define FSKRegTimerResol 0x38
mluis 0:62d1edcc13d1 383 #define FSKRegTimer1Coef 0x39
mluis 0:62d1edcc13d1 384 #define LORARegSyncWord 0x39
mluis 0:62d1edcc13d1 385 #define FSKRegTimer2Coef 0x3A
mluis 0:62d1edcc13d1 386 #define FSKRegImageCal 0x3B
mluis 0:62d1edcc13d1 387 #define FSKRegTemp 0x3C
mluis 0:62d1edcc13d1 388 #define FSKRegLowBat 0x3D
mluis 0:62d1edcc13d1 389 #define FSKRegIrqFlags1 0x3E
mluis 0:62d1edcc13d1 390 #define FSKRegIrqFlags2 0x3F
mluis 0:62d1edcc13d1 391 #define RegDioMapping1 0x40 // common
mluis 0:62d1edcc13d1 392 #define RegDioMapping2 0x41 // common
mluis 0:62d1edcc13d1 393 #define RegVersion 0x42 // common
mluis 0:62d1edcc13d1 394 // #define RegAgcRef 0x43 // common
mluis 0:62d1edcc13d1 395 // #define RegAgcThresh1 0x44 // common
mluis 0:62d1edcc13d1 396 // #define RegAgcThresh2 0x45 // common
mluis 0:62d1edcc13d1 397 // #define RegAgcThresh3 0x46 // common
mluis 0:62d1edcc13d1 398 // #define RegPllHop 0x4B // common
mluis 0:62d1edcc13d1 399 // #define RegTcxo 0x58 // common
mluis 0:62d1edcc13d1 400 #define RegPaDac 0x5A // common
mluis 0:62d1edcc13d1 401 // #define RegPll 0x5C // common
mluis 0:62d1edcc13d1 402 // #define RegPllLowPn 0x5E // common
mluis 0:62d1edcc13d1 403 // #define RegFormerTemp 0x6C // common
mluis 0:62d1edcc13d1 404 // #define RegBitRateFrac 0x70 // common
mluis 0:62d1edcc13d1 405
mluis 0:62d1edcc13d1 406 // ----------------------------------------
mluis 0:62d1edcc13d1 407 // spread factors and mode for RegModemConfig2
mluis 0:62d1edcc13d1 408 #define SX1272_MC2_FSK 0x00
mluis 0:62d1edcc13d1 409 #define SX1272_MC2_SF7 0x70
mluis 0:62d1edcc13d1 410 #define SX1272_MC2_SF8 0x80
mluis 0:62d1edcc13d1 411 #define SX1272_MC2_SF9 0x90
mluis 0:62d1edcc13d1 412 #define SX1272_MC2_SF10 0xA0
mluis 0:62d1edcc13d1 413 #define SX1272_MC2_SF11 0xB0
mluis 0:62d1edcc13d1 414 #define SX1272_MC2_SF12 0xC0
mluis 0:62d1edcc13d1 415 // bandwidth for RegModemConfig1
mluis 0:62d1edcc13d1 416 #define SX1272_MC1_BW_125 0x00
mluis 0:62d1edcc13d1 417 #define SX1272_MC1_BW_250 0x40
mluis 0:62d1edcc13d1 418 #define SX1272_MC1_BW_500 0x80
mluis 0:62d1edcc13d1 419 // coding rate for RegModemConfig1
mluis 0:62d1edcc13d1 420 #define SX1272_MC1_CR_4_5 0x08
mluis 0:62d1edcc13d1 421 #define SX1272_MC1_CR_4_6 0x10
mluis 0:62d1edcc13d1 422 #define SX1272_MC1_CR_4_7 0x18
mluis 0:62d1edcc13d1 423 #define SX1272_MC1_CR_4_8 0x20
mluis 0:62d1edcc13d1 424 #define SX1272_MC1_IMPLICIT_HEADER_MODE_ON 0x04 // required for receive
mluis 0:62d1edcc13d1 425 #define SX1272_MC1_RX_PAYLOAD_CRCON 0x02
mluis 0:62d1edcc13d1 426 #define SX1272_MC1_LOW_DATA_RATE_OPTIMIZE 0x01 // mandated for SF11 and SF12
mluis 0:62d1edcc13d1 427 // transmit power configuration for RegPaConfig
mluis 0:62d1edcc13d1 428 #define SX1272_PAC_PA_SELECT_PA_BOOST 0x80
mluis 0:62d1edcc13d1 429 #define SX1272_PAC_PA_SELECT_RFIO_PIN 0x00
mluis 0:62d1edcc13d1 430
mluis 0:62d1edcc13d1 431
mluis 0:62d1edcc13d1 432 // sx1276 RegModemConfig1
mluis 0:62d1edcc13d1 433 #define SX1276_MC1_BW_125 0x70
mluis 0:62d1edcc13d1 434 #define SX1276_MC1_BW_250 0x80
mluis 0:62d1edcc13d1 435 #define SX1276_MC1_BW_500 0x90
mluis 0:62d1edcc13d1 436 #define SX1276_MC1_CR_4_5 0x02
mluis 0:62d1edcc13d1 437 #define SX1276_MC1_CR_4_6 0x04
mluis 0:62d1edcc13d1 438 #define SX1276_MC1_CR_4_7 0x06
mluis 0:62d1edcc13d1 439 #define SX1276_MC1_CR_4_8 0x08
mluis 0:62d1edcc13d1 440
mluis 0:62d1edcc13d1 441 #define SX1276_MC1_IMPLICIT_HEADER_MODE_ON 0x01
mluis 0:62d1edcc13d1 442
mluis 0:62d1edcc13d1 443 // sx1276 RegModemConfig2
mluis 0:62d1edcc13d1 444 #define SX1276_MC2_RX_PAYLOAD_CRCON 0x04
mluis 0:62d1edcc13d1 445
mluis 0:62d1edcc13d1 446 // sx1276 RegModemConfig3
mluis 0:62d1edcc13d1 447 #define SX1276_MC3_LOW_DATA_RATE_OPTIMIZE 0x08
mluis 0:62d1edcc13d1 448 #define SX1276_MC3_AGCAUTO 0x04
mluis 0:62d1edcc13d1 449
mluis 0:62d1edcc13d1 450 // preamble for lora networks (nibbles swapped)
mluis 0:62d1edcc13d1 451 #define LORA_MAC_PREAMBLE 0x34
mluis 0:62d1edcc13d1 452
mluis 0:62d1edcc13d1 453 #define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG1 0x0A
mluis 0:62d1edcc13d1 454 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 455 #define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x70
mluis 0:62d1edcc13d1 456 #elif CFG_sx1272_radio
mluis 0:62d1edcc13d1 457 #define RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2 0x74
mluis 0:62d1edcc13d1 458 #endif
mluis 0:62d1edcc13d1 459
mluis 0:62d1edcc13d1 460
mluis 0:62d1edcc13d1 461
mluis 0:62d1edcc13d1 462 // ----------------------------------------
mluis 0:62d1edcc13d1 463 // Constants for radio registers
mluis 0:62d1edcc13d1 464 #define OPMODE_LORA 0x80
mluis 0:62d1edcc13d1 465 #define OPMODE_MASK 0x07
mluis 0:62d1edcc13d1 466 #define OPMODE_SLEEP 0x00
mluis 0:62d1edcc13d1 467 #define OPMODE_STANDBY 0x01
mluis 0:62d1edcc13d1 468 #define OPMODE_FSTX 0x02
mluis 0:62d1edcc13d1 469 #define OPMODE_TX 0x03
mluis 0:62d1edcc13d1 470 #define OPMODE_FSRX 0x04
mluis 0:62d1edcc13d1 471 #define OPMODE_RX 0x05
mluis 0:62d1edcc13d1 472 #define OPMODE_RX_SINGLE 0x06
mluis 0:62d1edcc13d1 473 #define OPMODE_CAD 0x07
mluis 0:62d1edcc13d1 474
mluis 0:62d1edcc13d1 475 // ----------------------------------------
mluis 0:62d1edcc13d1 476 // Bits masking the corresponding IRQs from the radio
mluis 0:62d1edcc13d1 477 #define IRQ_LORA_RXTOUT_MASK 0x80
mluis 0:62d1edcc13d1 478 #define IRQ_LORA_RXDONE_MASK 0x40
mluis 0:62d1edcc13d1 479 #define IRQ_LORA_CRCERR_MASK 0x20
mluis 0:62d1edcc13d1 480 #define IRQ_LORA_HEADER_MASK 0x10
mluis 0:62d1edcc13d1 481 #define IRQ_LORA_TXDONE_MASK 0x08
mluis 0:62d1edcc13d1 482 #define IRQ_LORA_CDDONE_MASK 0x04
mluis 0:62d1edcc13d1 483 #define IRQ_LORA_FHSSCH_MASK 0x02
mluis 0:62d1edcc13d1 484 #define IRQ_LORA_CDDETD_MASK 0x01
mluis 0:62d1edcc13d1 485
mluis 0:62d1edcc13d1 486 #define IRQ_FSK1_MODEREADY_MASK 0x80
mluis 0:62d1edcc13d1 487 #define IRQ_FSK1_RXREADY_MASK 0x40
mluis 0:62d1edcc13d1 488 #define IRQ_FSK1_TXREADY_MASK 0x20
mluis 0:62d1edcc13d1 489 #define IRQ_FSK1_PLLLOCK_MASK 0x10
mluis 0:62d1edcc13d1 490 #define IRQ_FSK1_RSSI_MASK 0x08
mluis 0:62d1edcc13d1 491 #define IRQ_FSK1_TIMEOUT_MASK 0x04
mluis 0:62d1edcc13d1 492 #define IRQ_FSK1_PREAMBLEDETECT_MASK 0x02
mluis 0:62d1edcc13d1 493 #define IRQ_FSK1_SYNCADDRESSMATCH_MASK 0x01
mluis 0:62d1edcc13d1 494 #define IRQ_FSK2_FIFOFULL_MASK 0x80
mluis 0:62d1edcc13d1 495 #define IRQ_FSK2_FIFOEMPTY_MASK 0x40
mluis 0:62d1edcc13d1 496 #define IRQ_FSK2_FIFOLEVEL_MASK 0x20
mluis 0:62d1edcc13d1 497 #define IRQ_FSK2_FIFOOVERRUN_MASK 0x10
mluis 0:62d1edcc13d1 498 #define IRQ_FSK2_PACKETSENT_MASK 0x08
mluis 0:62d1edcc13d1 499 #define IRQ_FSK2_PAYLOADREADY_MASK 0x04
mluis 0:62d1edcc13d1 500 #define IRQ_FSK2_CRCOK_MASK 0x02
mluis 0:62d1edcc13d1 501 #define IRQ_FSK2_LOWBAT_MASK 0x01
mluis 0:62d1edcc13d1 502
mluis 0:62d1edcc13d1 503 // ----------------------------------------
mluis 0:62d1edcc13d1 504 // DIO function mappings D0D1D2D3
mluis 0:62d1edcc13d1 505 #define MAP_DIO0_LORA_RXDONE 0x00 // 00------
mluis 0:62d1edcc13d1 506 #define MAP_DIO0_LORA_TXDONE 0x40 // 01------
mluis 0:62d1edcc13d1 507 #define MAP_DIO1_LORA_RXTOUT 0x00 // --00----
mluis 0:62d1edcc13d1 508 #define MAP_DIO1_LORA_NOP 0x30 // --11----
mluis 0:62d1edcc13d1 509 #define MAP_DIO2_LORA_NOP 0xC0 // ----11--
mluis 0:62d1edcc13d1 510
mluis 0:62d1edcc13d1 511 #define MAP_DIO0_FSK_READY 0x00 // 00------ (packet sent / payload ready)
mluis 0:62d1edcc13d1 512 #define MAP_DIO1_FSK_NOP 0x30 // --11----
mluis 0:62d1edcc13d1 513 #define MAP_DIO2_FSK_TXNOP 0x04 // ----01--
mluis 0:62d1edcc13d1 514 #define MAP_DIO2_FSK_TIMEOUT 0x08 // ----10--
mluis 0:62d1edcc13d1 515
mluis 0:62d1edcc13d1 516
mluis 0:62d1edcc13d1 517 // FSK IMAGECAL defines
mluis 0:62d1edcc13d1 518 #define RF_IMAGECAL_AUTOIMAGECAL_MASK 0x7F
mluis 0:62d1edcc13d1 519 #define RF_IMAGECAL_AUTOIMAGECAL_ON 0x80
mluis 0:62d1edcc13d1 520 #define RF_IMAGECAL_AUTOIMAGECAL_OFF 0x00 // Default
mluis 0:62d1edcc13d1 521
mluis 0:62d1edcc13d1 522 #define RF_IMAGECAL_IMAGECAL_MASK 0xBF
mluis 0:62d1edcc13d1 523 #define RF_IMAGECAL_IMAGECAL_START 0x40
mluis 0:62d1edcc13d1 524
mluis 0:62d1edcc13d1 525 #define RF_IMAGECAL_IMAGECAL_RUNNING 0x20
mluis 0:62d1edcc13d1 526 #define RF_IMAGECAL_IMAGECAL_DONE 0x00 // Default
mluis 0:62d1edcc13d1 527
mluis 0:62d1edcc13d1 528
mluis 0:62d1edcc13d1 529 // RADIO STATE
mluis 0:62d1edcc13d1 530 // (initialized by radio_init(), used by radio_rand1())
mluis 0:62d1edcc13d1 531 static u1_t randbuf[16];
mluis 0:62d1edcc13d1 532
mluis 0:62d1edcc13d1 533
mluis 0:62d1edcc13d1 534 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 535 #define LNA_RX_GAIN (0x20|0x1)
mluis 0:62d1edcc13d1 536 #elif CFG_sx1272_radio
mluis 0:62d1edcc13d1 537 #define LNA_RX_GAIN (0x20|0x03)
mluis 0:62d1edcc13d1 538 #else
mluis 0:62d1edcc13d1 539 #error Missing CFG_sx1272_radio/CFG_sx1276_radio
mluis 0:62d1edcc13d1 540 #endif
mluis 0:62d1edcc13d1 541
mluis 0:62d1edcc13d1 542 static void writeReg (u1_t addr, u1_t data ) {
mluis 0:62d1edcc13d1 543 hal_pin_nss(0);
mluis 0:62d1edcc13d1 544 hal_spi(addr | 0x80);
mluis 0:62d1edcc13d1 545 hal_spi(data);
mluis 0:62d1edcc13d1 546 hal_pin_nss(1);
mluis 0:62d1edcc13d1 547 }
mluis 0:62d1edcc13d1 548
mluis 0:62d1edcc13d1 549 static u1_t readReg (u1_t addr) {
mluis 0:62d1edcc13d1 550 hal_pin_nss(0);
mluis 0:62d1edcc13d1 551 hal_spi(addr & 0x7F);
mluis 0:62d1edcc13d1 552 u1_t val = hal_spi(0x00);
mluis 0:62d1edcc13d1 553 hal_pin_nss(1);
mluis 0:62d1edcc13d1 554 return val;
mluis 0:62d1edcc13d1 555 }
mluis 0:62d1edcc13d1 556
mluis 0:62d1edcc13d1 557 static void writeBuf (u1_t addr, xref2u1_t buf, u1_t len) {
mluis 0:62d1edcc13d1 558 hal_pin_nss(0);
mluis 0:62d1edcc13d1 559 hal_spi(addr | 0x80);
mluis 0:62d1edcc13d1 560 for (u1_t i=0; i<len; i++) {
mluis 0:62d1edcc13d1 561 hal_spi(buf[i]);
mluis 0:62d1edcc13d1 562 }
mluis 0:62d1edcc13d1 563 hal_pin_nss(1);
mluis 0:62d1edcc13d1 564 }
mluis 0:62d1edcc13d1 565
mluis 0:62d1edcc13d1 566 static void readBuf (u1_t addr, xref2u1_t buf, u1_t len) {
mluis 0:62d1edcc13d1 567 hal_pin_nss(0);
mluis 0:62d1edcc13d1 568 hal_spi(addr & 0x7F);
mluis 0:62d1edcc13d1 569 for (u1_t i=0; i<len; i++) {
mluis 0:62d1edcc13d1 570 buf[i] = hal_spi(0x00);
mluis 0:62d1edcc13d1 571 }
mluis 0:62d1edcc13d1 572 hal_pin_nss(1);
mluis 0:62d1edcc13d1 573 }
mluis 0:62d1edcc13d1 574
mluis 0:62d1edcc13d1 575 static void opmode (u1_t mode) {
mluis 0:62d1edcc13d1 576 writeReg(RegOpMode, (readReg(RegOpMode) & ~OPMODE_MASK) | mode);
mluis 0:62d1edcc13d1 577 }
mluis 0:62d1edcc13d1 578
mluis 0:62d1edcc13d1 579 static void opmodeLora(void) {
mluis 0:62d1edcc13d1 580 u1_t u = OPMODE_LORA;
mluis 0:62d1edcc13d1 581 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 582 u |= 0x8; // TBD: sx1276 high freq
mluis 0:62d1edcc13d1 583 #endif
mluis 0:62d1edcc13d1 584 writeReg(RegOpMode, u);
mluis 0:62d1edcc13d1 585 }
mluis 0:62d1edcc13d1 586
mluis 0:62d1edcc13d1 587 static void opmodeFSK(void) {
mluis 0:62d1edcc13d1 588 u1_t u = 0;
mluis 0:62d1edcc13d1 589 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 590 u |= 0x8; // TBD: sx1276 high freq
mluis 0:62d1edcc13d1 591 #endif
mluis 0:62d1edcc13d1 592 writeReg(RegOpMode, u);
mluis 0:62d1edcc13d1 593 }
mluis 0:62d1edcc13d1 594
mluis 0:62d1edcc13d1 595 // configure LoRa modem (cfg1, cfg2)
mluis 0:62d1edcc13d1 596 static void configLoraModem (void) {
mluis 0:62d1edcc13d1 597 sf_t sf = getSf(LMIC.rps);
mluis 0:62d1edcc13d1 598
mluis 0:62d1edcc13d1 599 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 600 u1_t mc1 = 0, mc2 = 0, mc3 = 0;
mluis 0:62d1edcc13d1 601
mluis 0:62d1edcc13d1 602 switch (getBw(LMIC.rps)) {
mluis 0:62d1edcc13d1 603 case BW125: mc1 |= SX1276_MC1_BW_125; break;
mluis 0:62d1edcc13d1 604 case BW250: mc1 |= SX1276_MC1_BW_250; break;
mluis 0:62d1edcc13d1 605 case BW500: mc1 |= SX1276_MC1_BW_500; break;
mluis 0:62d1edcc13d1 606 default:
mluis 0:62d1edcc13d1 607 ASSERT(0);
mluis 0:62d1edcc13d1 608 }
mluis 0:62d1edcc13d1 609 switch( getCr(LMIC.rps) ) {
mluis 0:62d1edcc13d1 610 case CR_4_5: mc1 |= SX1276_MC1_CR_4_5; break;
mluis 0:62d1edcc13d1 611 case CR_4_6: mc1 |= SX1276_MC1_CR_4_6; break;
mluis 0:62d1edcc13d1 612 case CR_4_7: mc1 |= SX1276_MC1_CR_4_7; break;
mluis 0:62d1edcc13d1 613 case CR_4_8: mc1 |= SX1276_MC1_CR_4_8; break;
mluis 0:62d1edcc13d1 614 default:
mluis 0:62d1edcc13d1 615 ASSERT(0);
mluis 0:62d1edcc13d1 616 }
mluis 0:62d1edcc13d1 617
mluis 0:62d1edcc13d1 618 if (getIh(LMIC.rps)) {
mluis 0:62d1edcc13d1 619 mc1 |= SX1276_MC1_IMPLICIT_HEADER_MODE_ON;
mluis 0:62d1edcc13d1 620 writeReg(LORARegPayloadLength, getIh(LMIC.rps)); // required length
mluis 0:62d1edcc13d1 621 }
mluis 0:62d1edcc13d1 622 // set ModemConfig1
mluis 0:62d1edcc13d1 623 writeReg(LORARegModemConfig1, mc1);
mluis 0:62d1edcc13d1 624
mluis 0:62d1edcc13d1 625 mc2 = (SX1272_MC2_SF7 + ((sf-1)<<4));
mluis 0:62d1edcc13d1 626 if (getNocrc(LMIC.rps) == 0) {
mluis 0:62d1edcc13d1 627 mc2 |= SX1276_MC2_RX_PAYLOAD_CRCON;
mluis 0:62d1edcc13d1 628 }
mluis 0:62d1edcc13d1 629 writeReg(LORARegModemConfig2, mc2);
mluis 0:62d1edcc13d1 630
mluis 0:62d1edcc13d1 631 mc3 = SX1276_MC3_AGCAUTO;
mluis 0:62d1edcc13d1 632 if (sf == SF11 || sf == SF12) {
mluis 0:62d1edcc13d1 633 mc3 |= SX1276_MC3_LOW_DATA_RATE_OPTIMIZE;
mluis 0:62d1edcc13d1 634 }
mluis 0:62d1edcc13d1 635 writeReg(LORARegModemConfig3, mc3);
mluis 0:62d1edcc13d1 636 #elif CFG_sx1272_radio
mluis 0:62d1edcc13d1 637 u1_t mc1 = (getBw(LMIC.rps)<<6);
mluis 0:62d1edcc13d1 638
mluis 0:62d1edcc13d1 639 switch( getCr(LMIC.rps) ) {
mluis 0:62d1edcc13d1 640 case CR_4_5: mc1 |= SX1272_MC1_CR_4_5; break;
mluis 0:62d1edcc13d1 641 case CR_4_6: mc1 |= SX1272_MC1_CR_4_6; break;
mluis 0:62d1edcc13d1 642 case CR_4_7: mc1 |= SX1272_MC1_CR_4_7; break;
mluis 0:62d1edcc13d1 643 case CR_4_8: mc1 |= SX1272_MC1_CR_4_8; break;
mluis 0:62d1edcc13d1 644 }
mluis 0:62d1edcc13d1 645
mluis 0:62d1edcc13d1 646 if (sf == SF11 || sf == SF12) {
mluis 0:62d1edcc13d1 647 mc1 |= SX1272_MC1_LOW_DATA_RATE_OPTIMIZE;
mluis 0:62d1edcc13d1 648 }
mluis 0:62d1edcc13d1 649
mluis 0:62d1edcc13d1 650 if (getNocrc(LMIC.rps) == 0) {
mluis 0:62d1edcc13d1 651 mc1 |= SX1272_MC1_RX_PAYLOAD_CRCON;
mluis 0:62d1edcc13d1 652 }
mluis 0:62d1edcc13d1 653
mluis 0:62d1edcc13d1 654 if (getIh(LMIC.rps)) {
mluis 0:62d1edcc13d1 655 mc1 |= SX1272_MC1_IMPLICIT_HEADER_MODE_ON;
mluis 0:62d1edcc13d1 656 writeReg(LORARegPayloadLength, getIh(LMIC.rps)); // required length
mluis 0:62d1edcc13d1 657 }
mluis 0:62d1edcc13d1 658 // set ModemConfig1
mluis 0:62d1edcc13d1 659 writeReg(LORARegModemConfig1, mc1);
mluis 0:62d1edcc13d1 660
mluis 0:62d1edcc13d1 661 // set ModemConfig2 (sf, AgcAutoOn=1 SymbTimeoutHi=00)
mluis 0:62d1edcc13d1 662 writeReg(LORARegModemConfig2, (SX1272_MC2_SF7 + ((sf-1)<<4)) | 0x04);
mluis 0:62d1edcc13d1 663 #else
mluis 0:62d1edcc13d1 664 #error Missing CFG_sx1272_radio/CFG_sx1276_radio
mluis 0:62d1edcc13d1 665 #endif /* CFG_sx1272_radio */
mluis 0:62d1edcc13d1 666 }
mluis 0:62d1edcc13d1 667
mluis 0:62d1edcc13d1 668 static void configChannel (void) {
mluis 0:62d1edcc13d1 669 // set frequency: FQ = (FRF * 32 Mhz) / (2 ^ 19)
mluis 0:62d1edcc13d1 670 u8_t frf = ((u8_t)LMIC.freq << 19) / 32000000;
mluis 0:62d1edcc13d1 671 writeReg(RegFrfMsb, (u1_t)(frf>>16));
mluis 0:62d1edcc13d1 672 writeReg(RegFrfMid, (u1_t)(frf>> 8));
mluis 0:62d1edcc13d1 673 writeReg(RegFrfLsb, (u1_t)(frf>> 0));
mluis 0:62d1edcc13d1 674 }
mluis 0:62d1edcc13d1 675
mluis 0:62d1edcc13d1 676
mluis 0:62d1edcc13d1 677
mluis 0:62d1edcc13d1 678 static void configPower (void) {
mluis 0:62d1edcc13d1 679 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 680 // no boost used for now
mluis 0:62d1edcc13d1 681 s1_t pw = (s1_t)LMIC.txpow;
mluis 0:62d1edcc13d1 682 if(pw > 14) {
mluis 0:62d1edcc13d1 683 pw = 14;
mluis 0:62d1edcc13d1 684 } else if(pw < -1) {
mluis 0:62d1edcc13d1 685 pw = -1;
mluis 0:62d1edcc13d1 686 }
mluis 0:62d1edcc13d1 687 // check board type for BOOST pin
mluis 0:62d1edcc13d1 688 writeReg(RegPaConfig, (u1_t)(0x00|((pw+1)&0xf)));
mluis 0:62d1edcc13d1 689 writeReg(RegPaDac, readReg(RegPaDac)|0x4);
mluis 0:62d1edcc13d1 690
mluis 0:62d1edcc13d1 691 #elif CFG_sx1272_radio
mluis 0:62d1edcc13d1 692 // set PA config (2-17 dBm using PA_BOOST)
mluis 0:62d1edcc13d1 693 s1_t pw = (s1_t)LMIC.txpow;
mluis 0:62d1edcc13d1 694 if(pw > 17) {
mluis 0:62d1edcc13d1 695 pw = 17;
mluis 0:62d1edcc13d1 696 } else if(pw < 2) {
mluis 0:62d1edcc13d1 697 pw = 2;
mluis 0:62d1edcc13d1 698 }
mluis 0:62d1edcc13d1 699 writeReg(RegPaConfig, (u1_t)(0x80|(pw-2)));
mluis 0:62d1edcc13d1 700 #else
mluis 0:62d1edcc13d1 701 #error Missing CFG_sx1272_radio/CFG_sx1276_radio
mluis 0:62d1edcc13d1 702 #endif /* CFG_sx1272_radio */
mluis 0:62d1edcc13d1 703 }
mluis 0:62d1edcc13d1 704
mluis 0:62d1edcc13d1 705 static void txfsk (void) {
mluis 0:62d1edcc13d1 706 // select FSK modem (from sleep mode)
mluis 0:62d1edcc13d1 707 writeReg(RegOpMode, 0x10); // FSK, BT=0.5
mluis 0:62d1edcc13d1 708 ASSERT(readReg(RegOpMode) == 0x10);
mluis 0:62d1edcc13d1 709 // enter standby mode (required for FIFO loading))
mluis 0:62d1edcc13d1 710 opmode(OPMODE_STANDBY);
mluis 0:62d1edcc13d1 711 // set bitrate
mluis 0:62d1edcc13d1 712 writeReg(FSKRegBitrateMsb, 0x02); // 50kbps
mluis 0:62d1edcc13d1 713 writeReg(FSKRegBitrateLsb, 0x80);
mluis 0:62d1edcc13d1 714 // set frequency deviation
mluis 0:62d1edcc13d1 715 writeReg(FSKRegFdevMsb, 0x01); // +/- 25kHz
mluis 0:62d1edcc13d1 716 writeReg(FSKRegFdevLsb, 0x99);
mluis 0:62d1edcc13d1 717 // frame and packet handler settings
mluis 0:62d1edcc13d1 718 writeReg(FSKRegPreambleMsb, 0x00);
mluis 0:62d1edcc13d1 719 writeReg(FSKRegPreambleLsb, 0x05);
mluis 0:62d1edcc13d1 720 writeReg(FSKRegSyncConfig, 0x12);
mluis 0:62d1edcc13d1 721 writeReg(FSKRegPacketConfig1, 0xD0);
mluis 0:62d1edcc13d1 722 writeReg(FSKRegPacketConfig2, 0x40);
mluis 0:62d1edcc13d1 723 writeReg(FSKRegSyncValue1, 0xC1);
mluis 0:62d1edcc13d1 724 writeReg(FSKRegSyncValue2, 0x94);
mluis 0:62d1edcc13d1 725 writeReg(FSKRegSyncValue3, 0xC1);
mluis 0:62d1edcc13d1 726 // configure frequency
mluis 0:62d1edcc13d1 727 configChannel();
mluis 0:62d1edcc13d1 728 // configure output power
mluis 0:62d1edcc13d1 729 configPower();
mluis 0:62d1edcc13d1 730
mluis 0:62d1edcc13d1 731 // set the IRQ mapping DIO0=PacketSent DIO1=NOP DIO2=NOP
mluis 0:62d1edcc13d1 732 writeReg(RegDioMapping1, MAP_DIO0_FSK_READY|MAP_DIO1_FSK_NOP|MAP_DIO2_FSK_TXNOP);
mluis 0:62d1edcc13d1 733
mluis 0:62d1edcc13d1 734 // initialize the payload size and address pointers
mluis 0:62d1edcc13d1 735 writeReg(FSKRegPayloadLength, LMIC.dataLen+1); // (insert length byte into payload))
mluis 0:62d1edcc13d1 736
mluis 0:62d1edcc13d1 737 // download length byte and buffer to the radio FIFO
mluis 0:62d1edcc13d1 738 writeReg(RegFifo, LMIC.dataLen);
mluis 0:62d1edcc13d1 739 writeBuf(RegFifo, LMIC.frame, LMIC.dataLen);
mluis 0:62d1edcc13d1 740
mluis 0:62d1edcc13d1 741 // enable antenna switch for TX
mluis 0:62d1edcc13d1 742 hal_pin_rxtx(1);
mluis 0:62d1edcc13d1 743
mluis 0:62d1edcc13d1 744 // now we actually start the transmission
mluis 0:62d1edcc13d1 745 opmode(OPMODE_TX);
mluis 0:62d1edcc13d1 746 }
mluis 0:62d1edcc13d1 747
mluis 0:62d1edcc13d1 748 static void txlora (void) {
mluis 0:62d1edcc13d1 749 // select LoRa modem (from sleep mode)
mluis 0:62d1edcc13d1 750 //writeReg(RegOpMode, OPMODE_LORA);
mluis 0:62d1edcc13d1 751 opmodeLora();
mluis 0:62d1edcc13d1 752 ASSERT((readReg(RegOpMode) & OPMODE_LORA) != 0);
mluis 0:62d1edcc13d1 753
mluis 0:62d1edcc13d1 754 // enter standby mode (required for FIFO loading))
mluis 0:62d1edcc13d1 755 opmode(OPMODE_STANDBY);
mluis 0:62d1edcc13d1 756 // configure LoRa modem (cfg1, cfg2)
mluis 0:62d1edcc13d1 757 configLoraModem();
mluis 0:62d1edcc13d1 758 // configure frequency
mluis 0:62d1edcc13d1 759 configChannel();
mluis 0:62d1edcc13d1 760 // configure output power
mluis 0:62d1edcc13d1 761 writeReg(RegPaRamp, (readReg(RegPaRamp) & 0xF0) | 0x08); // set PA ramp-up time 50 uSec
mluis 0:62d1edcc13d1 762 configPower();
mluis 0:62d1edcc13d1 763 // set sync word
mluis 0:62d1edcc13d1 764 writeReg(LORARegSyncWord, LORA_MAC_PREAMBLE);
mluis 0:62d1edcc13d1 765
mluis 0:62d1edcc13d1 766 // set the IRQ mapping DIO0=TxDone DIO1=NOP DIO2=NOP
mluis 0:62d1edcc13d1 767 writeReg(RegDioMapping1, MAP_DIO0_LORA_TXDONE|MAP_DIO1_LORA_NOP|MAP_DIO2_LORA_NOP);
mluis 0:62d1edcc13d1 768 // clear all radio IRQ flags
mluis 0:62d1edcc13d1 769 writeReg(LORARegIrqFlags, 0xFF);
mluis 0:62d1edcc13d1 770 // mask all IRQs but TxDone
mluis 0:62d1edcc13d1 771 writeReg(LORARegIrqFlagsMask, ~IRQ_LORA_TXDONE_MASK);
mluis 0:62d1edcc13d1 772
mluis 0:62d1edcc13d1 773 // initialize the payload size and address pointers
mluis 0:62d1edcc13d1 774 writeReg(LORARegFifoTxBaseAddr, 0x00);
mluis 0:62d1edcc13d1 775 writeReg(LORARegFifoAddrPtr, 0x00);
mluis 0:62d1edcc13d1 776 writeReg(LORARegPayloadLength, LMIC.dataLen);
mluis 0:62d1edcc13d1 777
mluis 0:62d1edcc13d1 778 // download buffer to the radio FIFO
mluis 0:62d1edcc13d1 779 writeBuf(RegFifo, LMIC.frame, LMIC.dataLen);
mluis 0:62d1edcc13d1 780
mluis 0:62d1edcc13d1 781 // enable antenna switch for TX
mluis 0:62d1edcc13d1 782 hal_pin_rxtx(1);
mluis 0:62d1edcc13d1 783
mluis 0:62d1edcc13d1 784 // now we actually start the transmission
mluis 0:62d1edcc13d1 785 opmode(OPMODE_TX);
mluis 0:62d1edcc13d1 786 }
mluis 0:62d1edcc13d1 787
mluis 0:62d1edcc13d1 788 // start transmitter (buf=LMIC.frame, len=LMIC.dataLen)
mluis 0:62d1edcc13d1 789 static void starttx (void) {
mluis 0:62d1edcc13d1 790 ASSERT( (readReg(RegOpMode) & OPMODE_MASK) == OPMODE_SLEEP );
mluis 0:62d1edcc13d1 791 if(getSf(LMIC.rps) == FSK) { // FSK modem
mluis 0:62d1edcc13d1 792 txfsk();
mluis 0:62d1edcc13d1 793 } else { // LoRa modem
mluis 0:62d1edcc13d1 794 txlora();
mluis 0:62d1edcc13d1 795 }
mluis 0:62d1edcc13d1 796 // the radio will go back to STANDBY mode as soon as the TX is finished
mluis 0:62d1edcc13d1 797 // the corresponding IRQ will inform us about completion.
mluis 0:62d1edcc13d1 798 }
mluis 0:62d1edcc13d1 799
mluis 0:62d1edcc13d1 800 enum { RXMODE_SINGLE, RXMODE_SCAN, RXMODE_RSSI };
mluis 0:62d1edcc13d1 801
mluis 0:62d1edcc13d1 802 static const u1_t rxlorairqmask[] = {
mluis 0:62d1edcc13d1 803 [RXMODE_SINGLE] = IRQ_LORA_RXDONE_MASK|IRQ_LORA_RXTOUT_MASK,
mluis 0:62d1edcc13d1 804 [RXMODE_SCAN] = IRQ_LORA_RXDONE_MASK,
mluis 0:62d1edcc13d1 805 [RXMODE_RSSI] = 0x00,
mluis 0:62d1edcc13d1 806 };
mluis 0:62d1edcc13d1 807
mluis 0:62d1edcc13d1 808 // start LoRa receiver (time=LMIC.rxtime, timeout=LMIC.rxsyms, result=LMIC.frame[LMIC.dataLen])
mluis 0:62d1edcc13d1 809 static void rxlora (u1_t rxmode) {
mluis 0:62d1edcc13d1 810 // select LoRa modem (from sleep mode)
mluis 0:62d1edcc13d1 811 opmodeLora();
mluis 0:62d1edcc13d1 812 ASSERT((readReg(RegOpMode) & OPMODE_LORA) != 0);
mluis 0:62d1edcc13d1 813 // enter standby mode (warm up))
mluis 0:62d1edcc13d1 814 opmode(OPMODE_STANDBY);
mluis 0:62d1edcc13d1 815 // don't use MAC settings at startup
mluis 0:62d1edcc13d1 816 if(rxmode == RXMODE_RSSI) { // use fixed settings for rssi scan
mluis 0:62d1edcc13d1 817 writeReg(LORARegModemConfig1, RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG1);
mluis 0:62d1edcc13d1 818 writeReg(LORARegModemConfig2, RXLORA_RXMODE_RSSI_REG_MODEM_CONFIG2);
mluis 0:62d1edcc13d1 819 } else { // single or continuous rx mode
mluis 0:62d1edcc13d1 820 // configure LoRa modem (cfg1, cfg2)
mluis 0:62d1edcc13d1 821 configLoraModem();
mluis 0:62d1edcc13d1 822 // configure frequency
mluis 0:62d1edcc13d1 823 configChannel();
mluis 0:62d1edcc13d1 824 }
mluis 0:62d1edcc13d1 825 // set LNA gain
mluis 0:62d1edcc13d1 826 writeReg(RegLna, LNA_RX_GAIN);
mluis 0:62d1edcc13d1 827 // set max payload size
mluis 0:62d1edcc13d1 828 writeReg(LORARegPayloadMaxLength, 64);
mluis 0:62d1edcc13d1 829 // use inverted I/Q signal (prevent mote-to-mote communication)
mluis 0:62d1edcc13d1 830 writeReg(LORARegInvertIQ, readReg(LORARegInvertIQ)|(1<<6));
mluis 0:62d1edcc13d1 831 // set symbol timeout (for single rx)
mluis 0:62d1edcc13d1 832 writeReg(LORARegSymbTimeoutLsb, LMIC.rxsyms);
mluis 0:62d1edcc13d1 833 // set sync word
mluis 0:62d1edcc13d1 834 writeReg(LORARegSyncWord, LORA_MAC_PREAMBLE);
mluis 0:62d1edcc13d1 835
mluis 0:62d1edcc13d1 836 // configure DIO mapping DIO0=RxDone DIO1=RxTout DIO2=NOP
mluis 0:62d1edcc13d1 837 writeReg(RegDioMapping1, MAP_DIO0_LORA_RXDONE|MAP_DIO1_LORA_RXTOUT|MAP_DIO2_LORA_NOP);
mluis 0:62d1edcc13d1 838 // clear all radio IRQ flags
mluis 0:62d1edcc13d1 839 writeReg(LORARegIrqFlags, 0xFF);
mluis 0:62d1edcc13d1 840 // enable required radio IRQs
mluis 0:62d1edcc13d1 841 writeReg(LORARegIrqFlagsMask, ~rxlorairqmask[rxmode]);
mluis 0:62d1edcc13d1 842
mluis 0:62d1edcc13d1 843 // enable antenna switch for RX
mluis 0:62d1edcc13d1 844 hal_pin_rxtx(0);
mluis 0:62d1edcc13d1 845
mluis 0:62d1edcc13d1 846 // now instruct the radio to receive
mluis 0:62d1edcc13d1 847 if (rxmode == RXMODE_SINGLE) { // single rx
mluis 0:62d1edcc13d1 848 hal_waitUntil(LMIC.rxtime); // busy wait until exact rx time
mluis 0:62d1edcc13d1 849 opmode(OPMODE_RX_SINGLE);
mluis 0:62d1edcc13d1 850 } else { // continous rx (scan or rssi)
mluis 0:62d1edcc13d1 851 opmode(OPMODE_RX);
mluis 0:62d1edcc13d1 852 }
mluis 0:62d1edcc13d1 853 }
mluis 0:62d1edcc13d1 854
mluis 0:62d1edcc13d1 855 static void rxfsk (u1_t rxmode) {
mluis 0:62d1edcc13d1 856 // only single rx (no continuous scanning, no noise sampling)
mluis 0:62d1edcc13d1 857 ASSERT( rxmode == RXMODE_SINGLE );
mluis 0:62d1edcc13d1 858 // select FSK modem (from sleep mode)
mluis 0:62d1edcc13d1 859 //writeReg(RegOpMode, 0x00); // (not LoRa)
mluis 0:62d1edcc13d1 860 opmodeFSK();
mluis 0:62d1edcc13d1 861 ASSERT((readReg(RegOpMode) & OPMODE_LORA) == 0);
mluis 0:62d1edcc13d1 862 // enter standby mode (warm up))
mluis 0:62d1edcc13d1 863 opmode(OPMODE_STANDBY);
mluis 0:62d1edcc13d1 864 // configure frequency
mluis 0:62d1edcc13d1 865 configChannel();
mluis 0:62d1edcc13d1 866 // set LNA gain
mluis 0:62d1edcc13d1 867 //writeReg(RegLna, 0x20|0x03); // max gain, boost enable
mluis 0:62d1edcc13d1 868 writeReg(RegLna, LNA_RX_GAIN);
mluis 0:62d1edcc13d1 869 // configure receiver
mluis 0:62d1edcc13d1 870 writeReg(FSKRegRxConfig, 0x1E); // AFC auto, AGC, trigger on preamble?!?
mluis 0:62d1edcc13d1 871 // set receiver bandwidth
mluis 0:62d1edcc13d1 872 writeReg(FSKRegRxBw, 0x0B); // 50kHz SSb
mluis 0:62d1edcc13d1 873 // set AFC bandwidth
mluis 0:62d1edcc13d1 874 writeReg(FSKRegAfcBw, 0x12); // 83.3kHz SSB
mluis 0:62d1edcc13d1 875 // set preamble detection
mluis 0:62d1edcc13d1 876 writeReg(FSKRegPreambleDetect, 0xAA); // enable, 2 bytes, 10 chip errors
mluis 0:62d1edcc13d1 877 // set sync config
mluis 0:62d1edcc13d1 878 writeReg(FSKRegSyncConfig, 0x12); // no auto restart, preamble 0xAA, enable, fill FIFO, 3 bytes sync
mluis 0:62d1edcc13d1 879 // set packet config
mluis 0:62d1edcc13d1 880 writeReg(FSKRegPacketConfig1, 0xD8); // var-length, whitening, crc, no auto-clear, no adr filter
mluis 0:62d1edcc13d1 881 writeReg(FSKRegPacketConfig2, 0x40); // packet mode
mluis 0:62d1edcc13d1 882 // set sync value
mluis 0:62d1edcc13d1 883 writeReg(FSKRegSyncValue1, 0xC1);
mluis 0:62d1edcc13d1 884 writeReg(FSKRegSyncValue2, 0x94);
mluis 0:62d1edcc13d1 885 writeReg(FSKRegSyncValue3, 0xC1);
mluis 0:62d1edcc13d1 886 // set preamble timeout
mluis 0:62d1edcc13d1 887 writeReg(FSKRegRxTimeout2, 0xFF);//(LMIC.rxsyms+1)/2);
mluis 0:62d1edcc13d1 888 // set bitrate
mluis 0:62d1edcc13d1 889 writeReg(FSKRegBitrateMsb, 0x02); // 50kbps
mluis 0:62d1edcc13d1 890 writeReg(FSKRegBitrateLsb, 0x80);
mluis 0:62d1edcc13d1 891 // set frequency deviation
mluis 0:62d1edcc13d1 892 writeReg(FSKRegFdevMsb, 0x01); // +/- 25kHz
mluis 0:62d1edcc13d1 893 writeReg(FSKRegFdevLsb, 0x99);
mluis 0:62d1edcc13d1 894
mluis 0:62d1edcc13d1 895 // configure DIO mapping DIO0=PayloadReady DIO1=NOP DIO2=TimeOut
mluis 0:62d1edcc13d1 896 writeReg(RegDioMapping1, MAP_DIO0_FSK_READY|MAP_DIO1_FSK_NOP|MAP_DIO2_FSK_TIMEOUT);
mluis 0:62d1edcc13d1 897
mluis 0:62d1edcc13d1 898 // enable antenna switch for RX
mluis 0:62d1edcc13d1 899 hal_pin_rxtx(0);
mluis 0:62d1edcc13d1 900
mluis 0:62d1edcc13d1 901 // now instruct the radio to receive
mluis 0:62d1edcc13d1 902 hal_waitUntil(LMIC.rxtime); // busy wait until exact rx time
mluis 0:62d1edcc13d1 903 opmode(OPMODE_RX); // no single rx mode available in FSK
mluis 0:62d1edcc13d1 904 }
mluis 0:62d1edcc13d1 905
mluis 0:62d1edcc13d1 906 static void startrx (u1_t rxmode) {
mluis 0:62d1edcc13d1 907 ASSERT( (readReg(RegOpMode) & OPMODE_MASK) == OPMODE_SLEEP );
mluis 0:62d1edcc13d1 908 if(getSf(LMIC.rps) == FSK) { // FSK modem
mluis 0:62d1edcc13d1 909 rxfsk(rxmode);
mluis 0:62d1edcc13d1 910 } else { // LoRa modem
mluis 0:62d1edcc13d1 911 rxlora(rxmode);
mluis 0:62d1edcc13d1 912 }
mluis 0:62d1edcc13d1 913 // the radio will go back to STANDBY mode as soon as the RX is finished
mluis 0:62d1edcc13d1 914 // or timed out, and the corresponding IRQ will inform us about completion.
mluis 0:62d1edcc13d1 915 }
mluis 0:62d1edcc13d1 916
mluis 0:62d1edcc13d1 917 // get random seed from wideband noise rssi
mluis 0:62d1edcc13d1 918 void radio_init (void) {
mluis 0:62d1edcc13d1 919 hal_disableIRQs();
mluis 0:62d1edcc13d1 920
mluis 0:62d1edcc13d1 921 // manually reset radio
mluis 0:62d1edcc13d1 922 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 923 hal_pin_rst(0); // drive RST pin low
mluis 0:62d1edcc13d1 924 #else
mluis 0:62d1edcc13d1 925 hal_pin_rst(1); // drive RST pin high
mluis 0:62d1edcc13d1 926 #endif
mluis 0:62d1edcc13d1 927 hal_waitUntil(os_getTime()+ms2osticks(1)); // wait >100us
mluis 0:62d1edcc13d1 928 hal_pin_rst(2); // configure RST pin floating!
mluis 0:62d1edcc13d1 929 hal_waitUntil(os_getTime()+ms2osticks(5)); // wait 5ms
mluis 0:62d1edcc13d1 930
mluis 0:62d1edcc13d1 931 opmode(OPMODE_SLEEP);
mluis 0:62d1edcc13d1 932 // some sanity checks, e.g., read version number
mluis 0:62d1edcc13d1 933 u1_t v = readReg(RegVersion);
mluis 0:62d1edcc13d1 934 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 935 ASSERT(v == 0x12 );
mluis 0:62d1edcc13d1 936 #elif CFG_sx1272_radio
mluis 0:62d1edcc13d1 937 ASSERT(v == 0x22);
mluis 0:62d1edcc13d1 938 #else
mluis 0:62d1edcc13d1 939 #error Missing CFG_sx1272_radio/CFG_sx1276_radio
mluis 0:62d1edcc13d1 940 #endif
mluis 0:62d1edcc13d1 941 // seed 15-byte randomness via noise rssi
mluis 0:62d1edcc13d1 942 rxlora(RXMODE_RSSI);
mluis 0:62d1edcc13d1 943 while( (readReg(RegOpMode) & OPMODE_MASK) != OPMODE_RX ); // continuous rx
mluis 0:62d1edcc13d1 944 for(int i=1; i<16; i++) {
mluis 0:62d1edcc13d1 945 for(int j=0; j<8; j++) {
mluis 0:62d1edcc13d1 946 u1_t b; // wait for two non-identical subsequent least-significant bits
mluis 0:62d1edcc13d1 947 while( (b = readReg(LORARegRssiWideband) & 0x01) == (readReg(LORARegRssiWideband) & 0x01) );
mluis 0:62d1edcc13d1 948 randbuf[i] = (randbuf[i] << 1) | b;
mluis 0:62d1edcc13d1 949 }
mluis 0:62d1edcc13d1 950 }
mluis 0:62d1edcc13d1 951 randbuf[0] = 16; // set initial index
mluis 0:62d1edcc13d1 952
mluis 0:62d1edcc13d1 953 #ifdef CFG_sx1276_radio
mluis 0:62d1edcc13d1 954 // chain calibration
mluis 0:62d1edcc13d1 955 writeReg(RegPaConfig, 0);
mluis 0:62d1edcc13d1 956
mluis 0:62d1edcc13d1 957 // Launch Rx chain calibration for LF band
mluis 0:62d1edcc13d1 958 writeReg(FSKRegImageCal, (readReg(FSKRegImageCal) & RF_IMAGECAL_IMAGECAL_MASK)|RF_IMAGECAL_IMAGECAL_START);
mluis 0:62d1edcc13d1 959 while((readReg(FSKRegImageCal)&RF_IMAGECAL_IMAGECAL_RUNNING) == RF_IMAGECAL_IMAGECAL_RUNNING){ ; }
mluis 0:62d1edcc13d1 960
mluis 0:62d1edcc13d1 961 // Sets a Frequency in HF band
mluis 0:62d1edcc13d1 962 u4_t frf = 868000000;
mluis 0:62d1edcc13d1 963 writeReg(RegFrfMsb, (u1_t)(frf>>16));
mluis 0:62d1edcc13d1 964 writeReg(RegFrfMid, (u1_t)(frf>> 8));
mluis 0:62d1edcc13d1 965 writeReg(RegFrfLsb, (u1_t)(frf>> 0));
mluis 0:62d1edcc13d1 966
mluis 0:62d1edcc13d1 967 // Launch Rx chain calibration for HF band
mluis 0:62d1edcc13d1 968 writeReg(FSKRegImageCal, (readReg(FSKRegImageCal) & RF_IMAGECAL_IMAGECAL_MASK)|RF_IMAGECAL_IMAGECAL_START);
mluis 0:62d1edcc13d1 969 while((readReg(FSKRegImageCal) & RF_IMAGECAL_IMAGECAL_RUNNING) == RF_IMAGECAL_IMAGECAL_RUNNING) { ; }
mluis 0:62d1edcc13d1 970 #endif /* CFG_sx1276_radio */
mluis 0:62d1edcc13d1 971
mluis 0:62d1edcc13d1 972 opmode(OPMODE_SLEEP);
mluis 0:62d1edcc13d1 973 hal_enableIRQs();
mluis 0:62d1edcc13d1 974 }
mluis 0:62d1edcc13d1 975
mluis 0:62d1edcc13d1 976 // return next random byte derived from seed buffer
mluis 0:62d1edcc13d1 977 // (buf[0] holds index of next byte to be returned)
mluis 0:62d1edcc13d1 978 u1_t radio_rand1 (void) {
mluis 0:62d1edcc13d1 979 u1_t i = randbuf[0];
mluis 0:62d1edcc13d1 980 ASSERT( i != 0 );
mluis 0:62d1edcc13d1 981 if( i==16 ) {
mluis 0:62d1edcc13d1 982 os_aes(AES_ENC, randbuf, 16); // encrypt seed with any key
mluis 0:62d1edcc13d1 983 i = 0;
mluis 0:62d1edcc13d1 984 }
mluis 0:62d1edcc13d1 985 u1_t v = randbuf[i++];
mluis 0:62d1edcc13d1 986 randbuf[0] = i;
mluis 0:62d1edcc13d1 987 return v;
mluis 0:62d1edcc13d1 988 }
mluis 0:62d1edcc13d1 989
mluis 0:62d1edcc13d1 990 u1_t radio_rssi (void) {
mluis 0:62d1edcc13d1 991 hal_disableIRQs();
mluis 0:62d1edcc13d1 992 u1_t r = readReg(LORARegRssiValue);
mluis 0:62d1edcc13d1 993 hal_enableIRQs();
mluis 0:62d1edcc13d1 994 return r;
mluis 0:62d1edcc13d1 995 }
mluis 0:62d1edcc13d1 996
mluis 0:62d1edcc13d1 997 static const u2_t LORA_RXDONE_FIXUP[] = {
mluis 0:62d1edcc13d1 998 [FSK] = us2osticks(0), // ( 0 ticks)
mluis 0:62d1edcc13d1 999 [SF7] = us2osticks(0), // ( 0 ticks)
mluis 0:62d1edcc13d1 1000 [SF8] = us2osticks(1648), // ( 54 ticks)
mluis 0:62d1edcc13d1 1001 [SF9] = us2osticks(3265), // ( 107 ticks)
mluis 0:62d1edcc13d1 1002 [SF10] = us2osticks(7049), // ( 231 ticks)
mluis 0:62d1edcc13d1 1003 [SF11] = us2osticks(13641), // ( 447 ticks)
mluis 0:62d1edcc13d1 1004 [SF12] = us2osticks(31189), // (1022 ticks)
mluis 0:62d1edcc13d1 1005 };
mluis 0:62d1edcc13d1 1006
mluis 0:62d1edcc13d1 1007 // called by hal ext IRQ handler
mluis 0:62d1edcc13d1 1008 // (radio goes to stanby mode after tx/rx operations)
mluis 0:62d1edcc13d1 1009 void radio_irq_handler (u1_t dio) {
mluis 0:62d1edcc13d1 1010 ostime_t now = os_getTime();
mluis 0:62d1edcc13d1 1011 if( (readReg(RegOpMode) & OPMODE_LORA) != 0) { // LORA modem
mluis 0:62d1edcc13d1 1012 u1_t flags = readReg(LORARegIrqFlags);
mluis 0:62d1edcc13d1 1013 if( flags & IRQ_LORA_TXDONE_MASK ) {
mluis 0:62d1edcc13d1 1014 // save exact tx time
mluis 0:62d1edcc13d1 1015 LMIC.txend = now - us2osticks(43); // TXDONE FIXUP
mluis 0:62d1edcc13d1 1016 } else if( flags & IRQ_LORA_RXDONE_MASK ) {
mluis 0:62d1edcc13d1 1017 // save exact rx time
mluis 0:62d1edcc13d1 1018 LMIC.rxtime = now - LORA_RXDONE_FIXUP[getSf(LMIC.rps)];
mluis 0:62d1edcc13d1 1019 // read the PDU and inform the MAC that we received something
mluis 0:62d1edcc13d1 1020 LMIC.dataLen = (readReg(LORARegModemConfig1) & SX1272_MC1_IMPLICIT_HEADER_MODE_ON) ?
mluis 0:62d1edcc13d1 1021 readReg(LORARegPayloadLength) : readReg(LORARegRxNbBytes);
mluis 0:62d1edcc13d1 1022 // set FIFO read address pointer
mluis 0:62d1edcc13d1 1023 writeReg(LORARegFifoAddrPtr, readReg(LORARegFifoRxCurrentAddr));
mluis 0:62d1edcc13d1 1024 // now read the FIFO
mluis 0:62d1edcc13d1 1025 readBuf(RegFifo, LMIC.frame, LMIC.dataLen);
mluis 0:62d1edcc13d1 1026 // read rx quality parameters
mluis 0:62d1edcc13d1 1027 LMIC.rxq.snr = readReg(LORARegPktSnrValue); // SNR [dB] * 4
mluis 0:62d1edcc13d1 1028 LMIC.rxq.rssi = readReg(LORARegPktRssiValue) - 125 + 64; // RSSI [dBm] (-196...+63)
mluis 0:62d1edcc13d1 1029 } else if( flags & IRQ_LORA_RXTOUT_MASK ) {
mluis 0:62d1edcc13d1 1030 // indicate timeout
mluis 0:62d1edcc13d1 1031 LMIC.dataLen = 0;
mluis 0:62d1edcc13d1 1032 }
mluis 0:62d1edcc13d1 1033 // mask all radio IRQs
mluis 0:62d1edcc13d1 1034 writeReg(LORARegIrqFlagsMask, 0xFF);
mluis 0:62d1edcc13d1 1035 // clear radio IRQ flags
mluis 0:62d1edcc13d1 1036 writeReg(LORARegIrqFlags, 0xFF);
mluis 0:62d1edcc13d1 1037 } else { // FSK modem
mluis 0:62d1edcc13d1 1038 u1_t flags1 = readReg(FSKRegIrqFlags1);
mluis 0:62d1edcc13d1 1039 u1_t flags2 = readReg(FSKRegIrqFlags2);
mluis 0:62d1edcc13d1 1040 if( flags2 & IRQ_FSK2_PACKETSENT_MASK ) {
mluis 0:62d1edcc13d1 1041 // save exact tx time
mluis 0:62d1edcc13d1 1042 LMIC.txend = now;
mluis 0:62d1edcc13d1 1043 } else if( flags2 & IRQ_FSK2_PAYLOADREADY_MASK ) {
mluis 0:62d1edcc13d1 1044 // save exact rx time
mluis 0:62d1edcc13d1 1045 LMIC.rxtime = now;
mluis 0:62d1edcc13d1 1046 // read the PDU and inform the MAC that we received something
mluis 0:62d1edcc13d1 1047 LMIC.dataLen = readReg(FSKRegPayloadLength);
mluis 0:62d1edcc13d1 1048 // now read the FIFO
mluis 0:62d1edcc13d1 1049 readBuf(RegFifo, LMIC.frame, LMIC.dataLen);
mluis 0:62d1edcc13d1 1050 // read rx quality parameters
mluis 0:62d1edcc13d1 1051 LMIC.rxq.snr = 0; // determine snr
mluis 0:62d1edcc13d1 1052 LMIC.rxq.rssi = 0; // determine rssi
mluis 0:62d1edcc13d1 1053 } else if( flags1 & IRQ_FSK1_TIMEOUT_MASK ) {
mluis 0:62d1edcc13d1 1054 // indicate timeout
mluis 0:62d1edcc13d1 1055 LMIC.dataLen = 0;
mluis 0:62d1edcc13d1 1056 } else {
mluis 0:62d1edcc13d1 1057 while(1);
mluis 0:62d1edcc13d1 1058 }
mluis 0:62d1edcc13d1 1059 }
mluis 0:62d1edcc13d1 1060 // go from stanby to sleep
mluis 0:62d1edcc13d1 1061 opmode(OPMODE_SLEEP);
mluis 0:62d1edcc13d1 1062 // run os job (use preset func ptr)
mluis 0:62d1edcc13d1 1063 os_setCallback(&LMIC.osjob, LMIC.osjob.func);
mluis 0:62d1edcc13d1 1064 }
mluis 0:62d1edcc13d1 1065
mluis 0:62d1edcc13d1 1066 void os_radio (u1_t mode) {
mluis 0:62d1edcc13d1 1067 hal_disableIRQs();
mluis 0:62d1edcc13d1 1068 switch (mode) {
mluis 0:62d1edcc13d1 1069 case RADIO_RST:
mluis 0:62d1edcc13d1 1070 // put radio to sleep
mluis 0:62d1edcc13d1 1071 opmode(OPMODE_SLEEP);
mluis 0:62d1edcc13d1 1072 break;
mluis 0:62d1edcc13d1 1073
mluis 0:62d1edcc13d1 1074 case RADIO_TX:
mluis 0:62d1edcc13d1 1075 // transmit frame now
mluis 0:62d1edcc13d1 1076 starttx(); // buf=LMIC.frame, len=LMIC.dataLen
mluis 0:62d1edcc13d1 1077 break;
mluis 0:62d1edcc13d1 1078
mluis 0:62d1edcc13d1 1079 case RADIO_RX:
mluis 0:62d1edcc13d1 1080 // receive frame now (exactly at rxtime)
mluis 0:62d1edcc13d1 1081 startrx(RXMODE_SINGLE); // buf=LMIC.frame, time=LMIC.rxtime, timeout=LMIC.rxsyms
mluis 0:62d1edcc13d1 1082 break;
mluis 0:62d1edcc13d1 1083
mluis 0:62d1edcc13d1 1084 case RADIO_RXON:
mluis 0:62d1edcc13d1 1085 // start scanning for beacon now
mluis 0:62d1edcc13d1 1086 startrx(RXMODE_SCAN); // buf=LMIC.frame
mluis 0:62d1edcc13d1 1087 break;
mluis 0:62d1edcc13d1 1088 }
mluis 0:62d1edcc13d1 1089 hal_enableIRQs();
mluis 0:62d1edcc13d1 1090 }
mluis 0:62d1edcc13d1 1091
mluis 0:62d1edcc13d1 1092 #endif // USE_SMTC_RADIO_DRIVER