Robot's source code
Dependencies: mbed
main.cpp
- Committer:
- Near32
- Date:
- 2014-12-12
- Revision:
- 17:f360e21d3307
- Parent:
- 16:6bd245b26423
- Child:
- 20:2840a749fb55
File content as of revision 17:f360e21d3307:
#include "mbed.h" #include "QEI.h" #include "Odometry.h" #include <iostream> /*---------------------------------------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------------------------------------*/ /*KalmanFilter*/ #include "EKF.h" Mat<double> motion_bicycle3( Mat<double> state, Mat<double> command, double dt = 0.5); Mat<double> sensor_bicycle3( Mat<double> state, Mat<double> command, Mat<double> d_state, double dt = 0.5 ); Mat<double> jmotion_bicycle3( Mat<double> state, Mat<double> command, double dt = 0.5); Mat<double> jsensor_bicycle3( Mat<double> state, Mat<double> command, Mat<double> d_state, double dt = 0.5); void measurementCallback( Mat<double>* z, Odometry* odometry); bool setPWM(PwmOut *servo,float p); Mat<double> bicycle(3,1); int reduc = 16; /*---------------------------------------------------------------------------------------------------------*/ /*---------------------------------------------------------------------------------------------------------*/ /*----------------------------------------------------------------------------------------------*/ /*Serial*/ Serial pcs(USBTX, USBRX); // tx, rx /*----------------------------------------------------------------------------------------------*/ int main() { PwmOut pw1(p22); DigitalOut dir1(p21); PwmOut pw2(p24); DigitalOut dir2(p23); //mbuino /* PwmOut pw1(P0_17); DigitalOut dir1(P0_18); PwmOut pw2(P0_23); DigitalOut dir2(P0_19); */ /* //nucleo PwmOut pw1(PB_8); DigitalOut dir1(D12); PwmOut pw2(PB_9); DigitalOut dir2(D13); */ pw1.period_us(10); pw2.period_us(10); dir1.write(0); dir2.write(0); pw1.write(1.0); pw2.write(0.8); //setPWM(&pw1,0.9); pcs.printf("mise à jour des pwm.\n"); //while(1); /*----------------------------------------------------------------------------------------------*/ /*Odometry*/ QEI qei_left(p15,p16,NC,1024*reduc,QEI::X4_ENCODING); //QEI qei_left(P0_2,P0_7,NC,1024*reduc,QEI::X4_ENCODING);//mbuino //QEI qei_left(PA_3,PA_2,NC,1024*reduc,QEI::X4_ENCODING);//nucleo QEI qei_right(p17,p18,NC,1024*reduc,QEI::X4_ENCODING); //QEI qei_right(P0_8,P0_20,NC,1024*reduc,QEI::X4_ENCODING);//mbuino //QEI qei_right(PA_10,PB_3,NC,1024*reduc,QEI::X4_ENCODING);//nucleo Odometry odometry(&qei_left,&qei_right,0.07,0.07,0.26); /*----------------------------------------------------------------------------------------------*/ /*----------------------------------------------------------------------------------------------*/ /*KalmanFilter*/ double phi_max = 100; /*en millimetres*/ bicycle.set((double)100, 1,1); /*radius*/ bicycle.set((double)100, 2,1); bicycle.set((double)66, 3,1); /*entre-roue*/ int nbrstate = 5; int nbrcontrol = 2; int nbrobs = 5; double dt = (double)0.05; double stdnoise = (double)0.05; Mat<double> initX((double)0, nbrstate, 1); initX.set( (double)0, 3,1); bool extended = true; bool filterOn = false; EKF<double> instance(&pcs, nbrstate, nbrcontrol, nbrobs, dt, stdnoise, /*current state*/ initX, extended, filterOn); instance.initMotion(motion_bicycle3); instance.initSensor(sensor_bicycle3); instance.initJMotion(jmotion_bicycle3); instance.initJSensor(jsensor_bicycle3); /*desired State : (x y theta phiright phileft)*/ Mat<double> dX((double)0, nbrstate, 1); dX.set( (double)100, 1,1); dX.set( (double)0, 2,1); dX.set( (double)0, 3,1); dX.set( (double)0, 4,1); dX.set( (double)0, 5,1); Mat<double> ki((double)0, nbrcontrol, nbrstate); Mat<double> kp((double)0, nbrcontrol, nbrstate); Mat<double> kd((double)0, nbrcontrol, nbrstate); //Mat<double> kdd((double)0.0015, nbrcontrol, nbrstate); for(int i=1;i<=nbrstate;i++) { kp.set( (double)0.01, i, i); kd.set( (double)0.0001, i, i); ki.set( (double)0.0001, i, i); } instance.setKi(ki); instance.setKp(kp); instance.setKd(kd); //instance.setKdd(kdd); Mat<double> u(transpose( instance.getCommand()) ); /*Observations*/ /*il nous faut 5 observation :*/ Mat<double> z((double)0,5,1); measurementCallback(&z, &odometry); /*----------------------------------------------------------------------------------------------*/ while(1) { //wait(1); pcs.printf("%f : %f : %f\n",odometry.getX()*100,odometry.getY()*100,odometry.getTheta()*180/3.14); /*------------------------------------------------------------------------------------------*/ /*Asservissement*/ //measurementCallback(&z, &odometry); instance.measurement_Callback( instance.getX(), dX, true ); instance.state_Callback(); double phi_r = instance.getCommand().get(1,1); double phi_l = instance.getCommand().get(2,1); double phi_max = 100; instance.computeCommand(dX, (double)dt, -2); pcs.printf("command : \n phi_r = %f \n phi_l = %f \n", phi_r/phi_max*100, phi_l/phi_max*100); //instance.getX().afficher(); if(phi_r <= 0) dir1.write(0); else dir1.write(1); if(phi_l <= 0) dir2.write(0); else dir2.write(1); if(abs(phi_r/phi_max) < 1.0) setPWM(&pw1, (float)abs(phi_r/phi_max)); else cout << "P1..." << endl; if(abs(phi_l/phi_max) < 1.0) setPWM(&pw2,(float)abs(phi_l/phi_max)); else pcs.printf("P2..."); pcs.printf("\n\n----------------- Commande mise executee. ------------------ \n\n"); } } void measurementCallback( Mat<double>* z, Odometry* odometry) { z->set( (double)/*conversionUnitée mm */odometry->getX(), 1,1); z->set( (double)/*conversionUnitée mm*/odometry->getY(), 2,1); z->set( (double)/*conversionUnitée rad*/odometry->getTheta(), 3,1); } Mat<double> motion_bicycle3( Mat<double> state, Mat<double> command, double dt) { Mat<double> r(state); double v = bicycle.get(1,1)/(2*bicycle.get(3,1))*(r.get(4,1)+r.get(5,1)); double w = bicycle.get(1,1)/(2*bicycle.get(3,1))*(r.get(4,1)-r.get(5,1)); r.set( r.get(1,1) + v*cos(r.get(3,1))*dt, 1,1); r.set( r.get(2,1) + v*sin(r.get(3,1))*dt, 2,1); double angle = (r.get(3,1) + dt*w); if( angle < -PI) { angle = angle - PI*ceil(angle/PI); } else if( angle > PI) { angle = angle - PI*floor(angle/PI); } r.set( atan21(sin(angle), cos(angle)), 3,1); /*----------------------------------------*/ /*Modele du moteur*/ /*----------------------------------------*/ double r1 = bicycle.get(3,1)/bicycle.get(1,1)*(command.get(1,1)/bicycle.get(3,1)+command.get(2,1)); double r2 = bicycle.get(3,1)/bicycle.get(1,1)*(command.get(1,1)/bicycle.get(3,1)-command.get(2,1)); r.set( r1, 4,1); r.set( r2, 5,1); /*----------------------------------------*/ /*----------------------------------------*/ return r; } Mat<double> sensor_bicycle3( Mat<double> state, Mat<double> command, Mat<double> d_state, double dt) { return state; } Mat<double> jmotion_bicycle3( Mat<double> state, Mat<double> command, double dt) { double h = numeric_limits<double>::epsilon()*10e2; Mat<double> var( (double)0, state.getLine(), state.getColumn()); var.set( h, 1,1); Mat<double> G(motion_bicycle3(state, command, dt) - motion_bicycle3(state+var, command,dt)); for(int i=2;i<=state.getLine();i++) { var.set( (double)0, i-1,1); var.set( h, i,1); G = operatorL(G, motion_bicycle3(state, command, dt) - motion_bicycle3(state+var, command,dt) ); } return (1.0/h)*G; } Mat<double> jsensor_bicycle3( Mat<double> state, Mat<double> command, Mat<double> d_state, double dt) { double h = numeric_limits<double>::epsilon()*10e2; Mat<double> var((double)0, state.getLine(), state.getColumn()); var.set( h, 1,1); Mat<double> H(sensor_bicycle3(state, command, d_state, dt) - sensor_bicycle3(state+var, command, d_state, dt)); for(int i=2;i<=state.getLine();i++) { var.set( (double)0, i-1,1); var.set( h, i,1); Mat<double> temp(sensor_bicycle3(state, command, d_state, dt) - sensor_bicycle3(state+var, command, d_state, dt)); H = operatorL(H, temp ); pcs.printf("sensor bicycle %d...\n",i); } return (1.0/h)*H; } bool setPWM(PwmOut *servo,float p) { if(p <= 1.0f && p >= 0.0f) { servo->write(p); return true; } return false; }