Robot's source code
Dependencies: mbed
Diff: Asserv_Plan_B/planB.cpp
- Revision:
- 101:78dc61bd330d
- Parent:
- 100:a827a645d6c2
--- a/Asserv_Plan_B/planB.cpp Thu Apr 30 16:16:29 2015 +0000 +++ b/Asserv_Plan_B/planB.cpp Thu Apr 30 16:23:15 2015 +0000 @@ -1,33 +1,23 @@ #include "planB.h" #include "defines.h" - extern Serial logger; aserv_planB::aserv_planB(Odometry2 &odometry,Motor &motorL,Motor &motorR) : m_odometry(odometry), m_motorL(motorL), m_motorR(motorR) { - consigne_g = 0.0; - consigne_d = 0.0; - vitesse_g = 0; - vitesse_d = 0; - erreur_g = 0; - erreur_d = 0; - cmd_g = 0; - cmd_d = 0; - somme_erreur = 0; - somme_erreur_d = 0; - delta_erreur = 0; erreur_precedente = 0; - Kp = 0.30; - Ki = 0.01; - Kd = 0.5; - //etat_angle = 0; + Kp_angle = 1.2; //Fixed à 0.436 pour 180 deg + Kd_angle = 4.455; cmd = 0; + cmd_g = 0, cmd_d = 0; N = 0; - moyenne = 0; - limite = 0; done = false; state = 0; // Etat ou l'on ne fait rien + distance_g = 0; + distance_d = 0; + Kp_distance = 0.0075; + Ki_distance = 0; + Kd_distance = 0; } void aserv_planB::setGoal(float x, float y, float theta) @@ -35,11 +25,13 @@ m_goalX = x; m_goalY = y; m_goalTheta = theta; - - state = 1; // Etat de rotation 1 + thetaGoal = atan2(m_goalY-m_odometry.getY(),m_goalX-m_odometry.getX()); + distance_g = sqrt(carre(m_goalY-m_odometry.getY())+carre(m_goalX-m_odometry.getX())); + distance_d = distance_g; + state = 2; // Etat de rotation 1 } -void aserv_planB::control_speed() +/*void aserv_planB::control_speed() { vitesse_d = m_odometry.getVitRight(); vitesse_g = m_odometry.getVitLeft(); @@ -51,52 +43,59 @@ m_motorL.setSpeed(cmd_g); m_motorR.setSpeed(cmd_d); -} +}*/ void aserv_planB::update(float dt) { - if(state == 1) - { - float thetaGoal = atan2(m_goalY-m_odometry.getY(),m_goalX-m_odometry.getX()); - + // Etat 1 : Angle theta pour viser dans la direction du point M(x,y) + if(state == 1 && N < 100) + { float erreur_theta = thetaGoal-m_odometry.getTheta(); - if(erreur_theta <= PI) erreur_theta += 2.0f*PI; - if(erreur_theta >= PI) erreur_theta -= 2.0f*PI; + if(erreur_theta <= PI) erreur_theta += 2.0*PI; + if(erreur_theta >= PI) erreur_theta -= 2.0*PI; - /*if(erreur_theta < 0) etat_angle = 1; - else if(erreur_theta > 0) etat_angle = 2; - else etat_angle = 0;*/ - /*limite = (0.5-Kp*erreur_theta)/Ki; - if(somme_erreur >= limite) somme_erreur = limite; - if(somme_erreur <= -limite) somme_erreur = -limite;*/ + //logger.printf("%.2f\r\n", erreur_theta*180/PI); - cmd = erreur_theta*Kp + somme_erreur*Ki - delta_erreur*Kd; - somme_erreur += erreur_theta; - delta_erreur = erreur_theta - erreur_precedente; + cmd = erreur_theta*Kp_angle + (erreur_theta-erreur_precedente)*Kd_angle; erreur_precedente = erreur_theta; m_motorL.setSpeed(-cmd); m_motorR.setSpeed(cmd); - //! Pas bon coeff, mais c'est l'idée - consigne_g = 0;//-erreur_theta*0.0001; - consigne_d = 0;//erreur_theta*0.0001; - - /*if(erreur_theta <= abs(0.7)) - { - done = true; - logger.printf("Posey\r\n"); + N++; + if(N==100) // && (abs(erreur_theta)<=2.0) + { state = 2; - }*/ + logger.printf("%.2f %.2f\r\n", erreur_theta*180/PI, thetaGoal*180/PI); + m_odometry.setDistLeft(0); + m_odometry.setDistRight(0); + memo_g = m_odometry.getDistLeft(); + memo_d = m_odometry.getDistRight(); + } } - /*switch(etat_angle) + + // Etat 2 : Parcours du robot jusqu'au point M(x,y) + if(state == 2) { - case 0: - - break; - - case 1: - - break;*/ + float erreur_distance_g = distance_g-(m_odometry.getDistLeft()-memo_g); //- distance parcourue par la roue gauche depuis l'état 2 + float erreur_distance_d = distance_d-(m_odometry.getDistRight()-memo_d); + cmd_g = erreur_distance_g*Kp_distance; + cmd_d = erreur_distance_d*Kp_distance; + + m_motorL.setSpeed(0); + m_motorR.setSpeed(0); + + logger.printf("%.2f %.2f\r\n", m_odometry.getDistLeft(), m_odometry.getDistRight()); + + //N++; + if(N==100) state = 2; + } + + // Etat 3 : Placement au bon angle Phi souhaité au point M(x,y) + if(state == 3) + { + m_motorL.setSpeed(0); + m_motorR.setSpeed(0); + } }