Rohan - COG4050 and ADXL355 Tilt sensing
Dependents: COG4050_adxl355_tilt COG4050_adxl355_tilt COG4050_adxl355_tilt_4050
Fork of ADXL355 by
ADXL355.cpp
- Committer:
- RGurav
- Date:
- 2018-08-21
- Revision:
- 1:e80c97768af4
- Parent:
- 0:1b8d65be0eef
File content as of revision 1:e80c97768af4:
#include <stdint.h>
#include "mbed.h"
#include "ADXL355.h"
//DigitalOut int1; ///< DigitalOut instance for the chipselect of the ADXL
//DigitalOut int2; ///< DigitalOut instance for the chipselect of the ADXL
/** ----------------------------------- */
/** SPI (MAX 10MHZ) and reset */
/** ----------------------------------- */
ADXL355::ADXL355(PinName cs_pin, PinName MOSI, PinName MISO, PinName SCK): adxl355(MOSI, MISO, SCK), cs(cs_pin)
{
cs = 1;
adxl355.format(8,_SPI_MODE);
adxl355.lock();
axis355_sens = 3.9e-6;
axis357_sens = 19.5e-6;
calib_data.S[0][0] = 3.9e-6;
calib_data.S[1][1] = 3.9e-6;
calib_data.S[2][2] = 3.9e-6;
}
void ADXL355::frequency(int hz)
{
adxl355.frequency(hz);
}
void ADXL355::reset(void)
{
adxl355.format(8, _SPI_MODE);
cs = false;
// Writing Code 0x52 (representing the letter, R, in ASCII or unicode) to this register immediately resets the ADXL362.
write_reg(RESET, _RESET);
cs = true;
axis355_sens = 3.9e-6;
axis357_sens = 19.5e-6;
}
/** ----------------------------------- */
/** Writes the reg register with data */
/** ----------------------------------- */
void ADXL355::write_reg(ADXL355_register_t reg, uint8_t data)
{
adxl355.format(8, _SPI_MODE);
cs = false;
adxl355.write(static_cast<uint8_t>(reg<<1) | _WRITE_REG_CMD);
adxl355.write(data);
cs = true;
}
void ADXL355::write_reg_u16(ADXL355_register_t reg, uint16_t data)
{
adxl355.format(8, _SPI_MODE);
cs = false;
adxl355.write(static_cast<uint8_t>(reg<<1) | _WRITE_REG_CMD);
adxl355.write(static_cast<uint8_t>(data & 0xff));
adxl355.write(static_cast<uint8_t>((data & 0xff00) >> 8));
cs = true;
}
/** ----------------------------------- */
/** Reads the reg register */
/** ----------------------------------- */
uint8_t ADXL355::read_reg(ADXL355_register_t reg)
{
uint8_t ret_val;
adxl355.format(8, _SPI_MODE);
cs = false;
adxl355.write(static_cast<uint8_t>(reg<<1) | _READ_REG_CMD);
ret_val = adxl355.write(_DUMMY_BYTE);
cs = true;
return ret_val;
}
uint16_t ADXL355::read_reg_u16(ADXL355_register_t reg){
uint16_t ret_val = 0;
adxl355.format(8, _SPI_MODE);
cs = false;
adxl355.write(static_cast<uint8_t>(reg<<1) | _READ_REG_CMD);
ret_val = adxl355.write(_DUMMY_BYTE);
ret_val = (ret_val<<8) | adxl355.write(_DUMMY_BYTE);
cs = true;
return ret_val;
}
uint32_t ADXL355::read_reg_u20(ADXL355_register_t reg){
uint32_t ret_val = 0;
adxl355.format(8, _SPI_MODE);
cs = false;
adxl355.write((reg<<1) | _READ_REG_CMD);
ret_val = 0x0f & adxl355.write(_DUMMY_BYTE);
ret_val = (ret_val<<8) | adxl355.write(_DUMMY_BYTE);
ret_val = (ret_val<<8) | adxl355.write(_DUMMY_BYTE);
cs = true;
return ret_val;
}
/** ----------------------------------- */
/** Sets the CTL registers */
/** ----------------------------------- */
void ADXL355::set_power_ctl_reg(uint8_t data){
write_reg(POWER_CTL, data);
}
void ADXL355::set_filter_ctl_reg(ADXL355_filter_ctl_t hpf, ADXL355_filter_ctl_t odr){
write_reg(FILTER, static_cast<uint8_t>(hpf|odr));
}
void ADXL355::set_clk(ADXL355_sync_ctl_t data) {
write_reg(SYNC, static_cast<uint8_t>(data));
}
void ADXL355::set_device(ADXL355_range_ctl_t range) {
write_reg(RANGE, static_cast<uint8_t>(range));
switch(range){
case 0x01:
axis355_sens = 3.9e-6;
axis357_sens = 19.5e-6;
break;
case 0x02:
axis355_sens = 7.8e-6;
axis357_sens = 39e-6;
break;
case 0x03:
axis355_sens = 15.6e-6;
axis357_sens = 78e-6;
break;
}
}
/** ----------------------------------- */
/** Read the STATUS registers */
/** ----------------------------------- */
uint8_t ADXL355::read_status(){
return read_reg(STATUS);
}
/** ----------------------------------- */
/** ADXL must be set in measurement */
/** mode to read the data registers */
/** ----------------------------------- */
uint32_t ADXL355::scanx(){
return read_reg_u20(XDATA3);
}
uint32_t ADXL355::scany(){
return read_reg_u20(YDATA3);
}
uint32_t ADXL355::scanz(){
return read_reg_u20(ZDATA3);
}
uint16_t ADXL355::scant(){
return read_reg_u16(TEMP2);
}
/** ----------------------------------- */
/** Activity SetUp - the measured */
/** acceleration on any axis is above */
/** the ACT_THRESH bits for ACT_COUNT */
/** consecutive measurements. */
/** ----------------------------------- */
void ADXL355::set_activity_axis(ADXL355_act_ctl_t axis) {
write_reg(ACT_EN, axis);
}
void ADXL355::set_activity_cnt(uint8_t count) {
write_reg(ACT_COUNT, count);
}
void ADXL355::set_activity_threshold(uint8_t data_h, uint8_t data_l) {
uint16_t ret_val = static_cast<uint16_t>((data_h<<8)|data_l);
write_reg_u16(ACT_THRESH_H, ret_val);
}
void ADXL355::set_inactivity() {
write_reg(ACT_EN, 0x00);
}
/** ----------------------------------- */
/** ----------------------------------- */
void ADXL355::set_interrupt1_pin(PinName in, ADXL355_intmap_ctl_t mode) {}
void ADXL355::set_interrupt2_pin(PinName in, ADXL355_intmap_ctl_t mode) {}
void ADXL355::enable_interrupt1() {}
void ADXL355::enable_interrupt2() {}
void ADXL355::disable_interrupt1() {}
void ADXL355::disable_interrupt2() {}
void ADXL355::set_polling_interrupt1_pin(uint8_t data) {}
void ADXL355::set_polling_interrupt2_pin(uint8_t data) {}
bool get_int1() {}
bool get_int2() {}
/** ----------------------------------- */
/** FIFO set up and read operation */
/** ----------------------------------- */
uint8_t ADXL355::fifo_read_nr_of_entries(){
return read_reg(FIFO_ENTRIES);
}
void ADXL355::fifo_setup(uint8_t nr_of_entries){
if (nr_of_entries > 0x60) {
nr_of_entries = nr_of_entries;
}
write_reg(FIFO_SAMPLES, nr_of_entries);
}
uint32_t ADXL355::fifo_read_u32() {
uint32_t ret_val = 0;
adxl355.format(8, _SPI_MODE);
cs = false;
adxl355.write(_READ_FIFO_CMD);
ret_val = adxl355.write(_DUMMY_BYTE);
ret_val = (ret_val<<8) | static_cast<uint8_t>(adxl355.write(_DUMMY_BYTE));
ret_val = (ret_val<<4) | static_cast<uint8_t>(adxl355.write(_DUMMY_BYTE)>>4);
cs = true;
return ret_val;
}
uint64_t ADXL355::fifo_scan() {
uint64_t ret_val = 0;
uint32_t x = 0, y = 0, z = 0, dummy;
adxl355.format(8, _SPI_MODE);
cs = false;
adxl355.write(_READ_FIFO_CMD);
for(uint8_t i = 0; i < 3; i++) {
dummy = adxl355.write(_DUMMY_BYTE);
dummy = (dummy<<8) | static_cast<uint8_t>(adxl355.write(_DUMMY_BYTE));
dummy = (dummy<<4) | static_cast<uint8_t>(adxl355.write(_DUMMY_BYTE)>>4);
dummy = dummy & 0xffff;
switch(i) {
case 0: // x
x = dummy;
break;
case 1: // y
y = dummy;
break;
case 2: // z
z = dummy;
break;
}
}
cs = true;
// format (24)xx(24)yy(24)zz
ret_val = static_cast<uint64_t> (x) << 48;
ret_val |= static_cast<uint64_t>(y) << 24;
ret_val |= static_cast<uint64_t>(z) ;
return ret_val;
}
/** ----------------------------------- */
/** CALIBRATION AND CONVERSION */
/** ----------------------------------- */
float ADXL355::convert(uint32_t data){
// If a positive value, return it
if ((data & 0x80000) == 0)
{
return float(data);
}
//uint32_t rawValue = data<<(32-nbit);
// Otherwise perform the 2's complement math on the value
return float((~(data - 0x01)) & 0xfffff) * -1;
}
ADXL355::ADXL355_calibdata_t ADXL355::convert_2p(float angle[11][2], float meas[11][2])
{
ADXL355_calibdata_t res;
for(int i=0; i<3; i++)
{
res.S[i][i]= (angle[i][1]-angle[i][0])/(meas[i][1]-meas[i][0]);
res.B[i][0]= (angle[i][0]*meas[i][1]-angle[i][1]*meas[i][0])/(meas[i][1]-meas[i][0]);
}
return res;
}
ADXL355::ADXL355_calibdata_t ADXL355::convert_3to8p(float angle[11][2], float meas[11][2], int count){}
ADXL355::ADXL355_calibdata_t ADXL355::convert_12p(float angle[11][2], float meas[11][2]){}
