Embeddedsystems Desigdourse

Applyingthe mbedmicrocontroller

Timers and interrupts

These course notes are written ByToulsorfAnglia Ruskin University) afmdWilmshurst
(University of Derby). (c) ARM 2012

FAST AND EFFECTIVE
EMBEDDED SYSTEMS

DESIGN AR o %
a8 ¢ i e Q@
¢tKSaS O02dNES y2iG8a 002YLIye (KS G(SEdGo221 a STFSOINE
LY eAy3 GKS !'wa YoSRé

http://mbed.org | Rapid Prototyping for Microcontrollers

Timers and Iinterrupts

A Time and event management in embedded systems
A An introduction to timers

A Using the mbed Timer object

A Using multiple timers

A Using the mbed Ticker object

A Hardware interrupts

A External interrupts on the mbed

A Switch debouncing for interrupt control

A Extended exercises

http://mbed.org | Rapid Prototyping for Microcontrollers

Time and event management in embeddec
systems

A Many embedded systems need high precision timing control and the ability to
respond urgently to critical requests

A For example:

I A video camera needs to capture image data at very specific time intervals, and to a higl
degree of accuracy, to enable smooth playback

T A automotive system needs to be able to respond rapidly to a crash detection sensor in
order to activate the passenger airbag

A Interrupts allow software processes to be halted while another, higher priority
section of software executes

A Interrupt routines can be programmed to execute on timed events or by events
that occur externally in hardware

A Routines executed by events that occur from an external source (e.g. a mouse clic
or input from another program) can be referred to'@gent driverf

http://mbed.org | Rapid Prototyping for Microcontrollers

An Iintroduction to timers

A Interrupts in embedded systems can be thought of as functions which are
called by specific events rather than directly in code.

A The simplest type of interrupt is one which automatically increments a
counter at a periodic interval, this is done behind the scenes while the
software is operating.

A Most microcontrollers have built in timers or reihe-interrupts which
can be used for this purpose.

A The main code can then be executed at specified time increments by
evaluating the counter value.

A For example, we can set some pieces of software to operate every 10ms
and others to operate every 100ms. We call this scheduled programming.

http://mbed.org | Rapid Prototyping for Microcontrollers

Using the mbed Timer object

We can use the mbed Timer object to perform scheduled programming:

A general purpose timer

Functions Usage

start Start the timer

stop Stop the timer

reset Reset the timer to 0

read Get the time passed in seconds
read_ms Get the time passed imili-seconds
read_us Get the time passed in mici®econds

http://mbed.org | Rapid Prototyping for Microcontrollers

A simple timer routine

A Exercise 1: Create a square wave output using scheduled programming
and verify the timing accuracy with an oscilloscope.

#include "mbed.h"

Start
+ Timer timer1,; /I define timer object
Start timer DigitaIOut out_putl(p5); /I digital o_utput
counting void task1(void); / task function prototype

[I*** main code

< < int main() {
timerl.start(); // start timer counting
Y no while(2) {
Is settime if (timerl.read_ms()>=200) //read time in ms
exceeded? {
task1(); /I call task function
timerl.reset(); I reset timer
Calltoggle }
function }
}
Resettimer void taskl(void){ [/l task function
outputl=loutputl; /l toggle output
| }

http://mbed.org | Rapid Prototyping for Microcontrollers

Using multiple timers

A With scheduled programs we often need to execute different sections of
code at different rates.

A Consider an automotive system:

I The engine spark, valve and fuel injection system needs to be controlled and
executed at a high speed, perhaps every 1 ms or less given that the engine
revolves at anything up to 8,000 revs per minute.

I The fuel tank level monitoring system needs to report the fuel level less often,
perhaps every 1000 ms is sufficient.

A There is no point in executing both the injection management and the fuel
level management systems at the same rate.

A For this reason we can use synchronous programs to improve efficiency.

http://mbed.org | Rapid Prototyping for Microcontrollers

Using multiple timers

A Exercise 2: Add a second timer which will run at a different rate, you can
use an LED or an oscilloscope on the mbed pins to check that the two
timers are executing correctly.

(/ o m_ain s /I ...continued
int main() {
timerl.start(); // start timerl counting ek .
timer2.start(); // start timer2 counting // : S func_tlons
while(1) { void taskl1(void){
if (timerl.read_ms()>=200) // read time } APUEEIEIIRLEL e iRl
{
task1(); /I call taskl function . .
.) . void task2(void){
} LlUEAE) WSS e output2=loutput2; // toggle output2
if (timer2.read_ms()>=1000) // read time }
{
task2(); /I call task2 function ; : :
t|mer2reset()’ // reset t|mer A Note- You WI” neEd tO deflne a
, second timer object, digital
} output and task function
/I continued... prototype.

http://mbed.org | Rapid Prototyping for Microcontrollers

Challenges with timer interrupts

A With scheduled programming, we need to be careful with the amount of
code and how long it takes to execute.

A For example, if we need to run a task every 1 ms, that task must take less
than 1 ms second to execute, otherwise the timing would overrun and the
system would go out of sync.

I How much code there is will determine how fast the processor clock needs to
be.

I We sometimes need to prioritize the tasks, does a 1ms task run before a
100ms task? (because after 100ms, both will want to run at the same time).

I This also means that pause, wait or delays (i.e. timing contrggdiyng
cannot be used within scheduled program designs.

http://mbed.org | Rapid Prototyping for Microcontrollers

Using the mbed Ticker object

A The Ticker interface is used to setup a recurring interrupt to repeatedly
call a designated function at a specified rate.

A Previously we used the Timer object, which required the main code to
continuously analyse the timer to determine whether it was the right time
to execute a specified function.

Aly FTYROGFHYyGlFr3asS 2F 0KS GAOTSNI 202S0i
SO we can execute other code while the ticker is running in the
background and calling the attached function as necessary.

http://mbed.org | Rapid Prototyping for Microcontrollers

Using the mbed Ticker object

The mbed ticker object can also be used for scheduled programming.

A Ticker is used to call a function at a recurring interval

Functions Usage

attach Attach a function to be called by the Ticker, specifying th
interval in seconds

attach Attach a member function to be called by the Ticker,
specifying the interval in seconds

attach_us Attach a function to be called by the Ticker, specifying th
interval in micreseconds

attach_us Attach a member function to be called by the Ticker,

specifying the interval in micrseconds
detach Detach the function

http://mbed.org | Rapid Prototyping for Microcontrollers

Using the mbed Ticker object

A Exercise 3: Use two
tickers to create
square wave outputs.

Use an LED or an
oscilloscope on the
mbed pins to check
that the two tickers
are executing
correctly.

http://mbed.org | Rapid Prototyping for Microcontrollers

#include" mbed.h"
Ticker flipperl;
Ticker flipper2;

DigitalOut led1(p5);

DigitalOut led2(p6);

void flip1() { /l flip 1 function
ledl = lled1;

}

void flip2() { /[flip 2 function
led2 = lled2;

}

int main() {
ledl = 0;
led2 = 0;

flipperl.attach(&flipl, 0.2); // the address of the
/[function to be attached
/I and the interval (sec)
flipper2.attach(&flip2, 1.0);

/l spin in a main loop
/I flipper will interrupt it to call flip

while(1) {
wait(0.2);
}

Hardware interrupts

A Microprocessors can be set up to perform specific tasks when hardware
events are incident.

A This allows the main code to run and perform its tasks, and only jump to
certain subroutines or functions when something physical happens.

I i.e. aswitch is pressed or a signal input changes state.

A Interrupts are used to ensure adequate service response times in
processing.

A The only real disadvantage of interrupt systems is the fact that
programming and code structures are more detailed and complex.

http://mbed.org | Rapid Prototyping for Microcontrollers

External interrupts on the mbed

External interrupts on the mbed:

Interruptin A digital interrupt input, used to call a function on a rising or
falling edge

Functions Usage

Interruptin Create an Interruptin connected to the specified pin

rise Attach a function to call when a rising edge occurs on the input

rise Attach a member function to call when a rising edge occurs on the inpi
fall Attach a function to call when a falling edge occurs on the input

fall Attach a member function to call when a falling edge occurs on the inp
mode Set the input pin mode

A Note: any digital input can be an interrupt except pin 19 and pin 20

http://mbed.org | Rapid Prototyping for Microcontrollers

External interrupts on the mbed

A Exercise 4: Use the mbed Interruptin library to toggle an LED whenever a
digital pushbutton input goes high.

#include "mbed.h"

Interruptin button(p18); // Interrupt on digital pushbutton input p18
DigitalOut led1(p5); /[digital out to p5

void toggle(void); Il function prototype
int main() {
button.rise(&toggle); // attach the address of the toggle
} I function to the rising edge
void toggle() {
led1=!led1,;
}

A You may notice some issues with this simple program, what are they?

http://mbed.org | Rapid Prototyping for Microcontrollers

Switch debouncing for interrupt control

A Exercise 4 doeg@work quite as expected:; it is possible for the button to
become unresponsive or out of synch with the LED.

A This is because of a common issue called switch or button bouncing. Whe
the button is pressed it doesicleanly switch from low to high, there is
some'Hounc&ln between as shown below:

Ideal switch
response

)

Actual switch
response

A Itis therefore easy to see how a single button press can cause multiple
interrupts and hence the LED can get out of synch with the button.

A We therefore need tdlebounce&lhe switch with a timer feature.

http://mbed.org | Rapid Prototyping for Microcontrollers

Switch debouncing for interrupt control

A Exercise 5: Use the mbed Interruptin library to toggle an LED whenever a
digital input goes high, implementing a debounce counter to avoid
multiple interrupts.

#include "mbed.h"

Interruptin button(p18); // Interrupt on digital pushbutton input p18
DigitalOut led1(p5); /[digital out to p5

Timer debounce; /I define debounce timer
void toggle(void); Il function prototype
int main() {

debounce.start();
button.rise(&toggle); // attach the address of the toggle

} 1 function to the rising edge
void toggle() {
if (debounce.read_ms()>200) // only allow toggle if debounce timer
led1=!led1; /I has passed 200 ms
debounce.reset(); /I restart timer when the toggle is performed
}

http://mbed.org | Rapid Prototyping for Microcontrollers

Switch debouncing for interrupt control

A By removing the bounces, the system acts as though the switch has an
ideal response.

A This can be done by a variety of hardware and software methods.
0N

Actual switch
response

Ideal switch
response

_ 1 ()

A An example of a classic hardware debouncer would be two -cosgled
NAND gates form a very simple $&set (SR) latch.

A Another example of a software debouncer would be to look for a number
of sequential readings of the switch, e.qg. if the input changes from O to 1
and then continues to read 1 for the next ten samples then the switch has
been pressed.

http://mbed.org | Rapid Prototyping for Microcontrollers

