
Timers and interrupts

Embedded Systems Design Course
Applying the mbed microcontroller

1

These course notes are written by R.Toulson (Anglia Ruskin University) and T.Wilmshurst
(University of Derby). (c) ARM 2012

¢ƘŜǎŜ ŎƻǳǊǎŜ ƴƻǘŜǎ ŀŎŎƻƳǇŀƴȅ ǘƘŜ ǘŜȄǘōƻƻƪ άCŀǎǘ ŀƴŘ ŜŦŦŜŎǘƛǾŜ ŜƳōŜŘŘŜŘ ǎȅǎǘŜƳ ŘŜǎƛƎƴ Υ
!ǇǇƭȅƛƴƎ ǘƘŜ !wa ƳōŜŘέ

Timers and interrupts

ÅTime and event management in embedded systems

ÅAn introduction to timers

ÅUsing the mbed Timer object

ÅUsing multiple timers

ÅUsing the mbed Ticker object

ÅHardware interrupts

ÅExternal interrupts on the mbed

ÅSwitch debouncing for interrupt control

ÅExtended exercises

2

Time and event management in embedded
systems

Å Many embedded systems need high precision timing control and the ability to
respond urgently to critical requests

Å For example:

ï A video camera needs to capture image data at very specific time intervals, and to a high
degree of accuracy, to enable smooth playback

ï A automotive system needs to be able to respond rapidly to a crash detection sensor in
order to activate the passenger airbag

Å Interrupts allow software processes to be halted while another, higher priority
section of software executes

Å Interrupt routines can be programmed to execute on timed events or by events
that occur externally in hardware

Å Routines executed by events that occur from an external source (e.g. a mouse click
or input from another program) can be referred to as Ψevent drivenΩ.

3

An introduction to timers

Å Interrupts in embedded systems can be thought of as functions which are
called by specific events rather than directly in code.

Å The simplest type of interrupt is one which automatically increments a
counter at a periodic interval, this is done behind the scenes while the
software is operating.

Å Most microcontrollers have built in timers or real-time-interrupts which
can be used for this purpose.

Å The main code can then be executed at specified time increments by
evaluating the counter value.

Å For example, we can set some pieces of software to operate every 10ms
and others to operate every 100ms. We call this scheduled programming.

4

Using the mbed Timer object

5

We can use the mbed Timer object to perform scheduled programming:

Timer A general purpose timer

Functions Usage

start Start the timer

stop Stop the timer

reset Reset the timer to 0

read Get the time passed in seconds

read_ms Get the time passed in mili-seconds

read_us Get the time passed in micro-seconds

A simple timer routine

Å Exercise 1: Create a square wave output using scheduled programming
and verify the timing accuracy with an oscilloscope.

6

#include "mbed.h"

Timer timer1; // define timer object

DigitalOut output1(p5); // digital output

void task1(void); // task function prototype

//*** main code

int main() {

 timer1.start(); // start timer counting

 while(1) {

 if (timer1.read_ms()>=200) // read time in ms

 {

 task1(); // call task function

 timer1.reset(); // reset timer

 }

 }

}

void task1(void){ // task function

 output1=!output1; // toggle output

}

Using multiple timers

Å With scheduled programs we often need to execute different sections of
code at different rates.

Å Consider an automotive system:

ï The engine spark, valve and fuel injection system needs to be controlled and
executed at a high speed, perhaps every 1 ms or less given that the engine
revolves at anything up to 8,000 revs per minute.

ï The fuel tank level monitoring system needs to report the fuel level less often,
perhaps every 1000 ms is sufficient.

Å There is no point in executing both the injection management and the fuel
level management systems at the same rate.

Å For this reason we can use synchronous programs to improve efficiency.

 7

Using multiple timers

Å Exercise 2: Add a second timer which will run at a different rate, you can
use an LED or an oscilloscope on the mbed pins to check that the two
timers are executing correctly.

8

//*** main code

int main() {

 timer1.start(); // start timer1 counting

 timer2.start(); // start timer2 counting

 while(1) {

 if (timer1.read_ms()>=200) // read time

 {

 task1(); // call task1 function

 timer1.reset(); // reset timer

 }

 if (timer2.read_ms()>=1000) // read time

 {

 task2(); // call task2 function

 timer2.reset(); // reset timer

 }

 }

}

// continued...

// ...continued

//*** task functions

void task1(void){

 output1=!output1; // toggle output1

}

void task2(void){

 output2=!output2; // toggle output2

}

Å Note: You will need to define a
second timer object, digital
output and task function
prototype.

Challenges with timer interrupts

Å With scheduled programming, we need to be careful with the amount of
code and how long it takes to execute.

Å For example, if we need to run a task every 1 ms, that task must take less
than 1 ms second to execute, otherwise the timing would overrun and the
system would go out of sync.

ï How much code there is will determine how fast the processor clock needs to
be.

ïWe sometimes need to prioritize the tasks, does a 1ms task run before a
100ms task? (because after 100ms, both will want to run at the same time).

ï This also means that pause, wait or delays (i.e. timing control by ΨpollingΩ)
cannot be used within scheduled program designs.

9

Using the mbed Ticker object

Å The Ticker interface is used to setup a recurring interrupt to repeatedly
call a designated function at a specified rate.

Å Previously we used the Timer object, which required the main code to
continuously analyse the timer to determine whether it was the right time
to execute a specified function.

Å !ƴ ŀŘǾŀƴǘŀƎŜ ƻŦ ǘƘŜ ǘƛŎƪŜǊ ƻōƧŜŎǘ ƛǎ ǘƘŀǘ ǿŜ ŘƻƴΩǘ ƴŜŜŘ ǘƻ ǊŜŀŘ ǘƘŜ ǘƛƳŜΣ
so we can execute other code while the ticker is running in the
background and calling the attached function as necessary.

10

Using the mbed Ticker object

11

The mbed ticker object can also be used for scheduled programming.

 Ticker A Ticker is used to call a function at a recurring interval

Functions Usage

attach Attach a function to be called by the Ticker, specifying the
interval in seconds

attach Attach a member function to be called by the Ticker,
specifying the interval in seconds

attach_us Attach a function to be called by the Ticker, specifying the
interval in micro-seconds

attach_us Attach a member function to be called by the Ticker,
specifying the interval in micro-seconds

detach Detach the function

Using the mbed Ticker object

Å Exercise 3: Use two
tickers to create
square wave outputs.

Å Use an LED or an
oscilloscope on the
mbed pins to check
that the two tickers
are executing
correctly.

12

#include " mbed.h "

Ticker flipper1;

Ticker flipper2;

DigitalOut led1(p5);

DigitalOut led2(p6);

void flip1() { // flip 1 function

 led1 = !led1;

}

void flip2() { // flip 2 function

 led2 = !led2;

}

int main() {

 led1 = 0;

 led2 = 0;

 flipper1.attach(&flip1, 0.2); // the address of the

 // function to be attached

 // and the interval (sec)

 flipper2.attach(&flip2, 1.0);

 // spin in a main loop

 // flipper will interrupt it to call flip

 while(1) {

 wait(0.2);

 }

}

Hardware interrupts

Å Microprocessors can be set up to perform specific tasks when hardware
events are incident.

Å This allows the main code to run and perform its tasks, and only jump to
certain subroutines or functions when something physical happens.

ï i.e. a switch is pressed or a signal input changes state.

Å Interrupts are used to ensure adequate service response times in
processing.

Å The only real disadvantage of interrupt systems is the fact that
programming and code structures are more detailed and complex.

13

External interrupts on the mbed

14

External interrupts on the mbed:

InterruptIn A digital interrupt input, used to call a function on a rising or
falling edge

Functions Usage

InterruptIn Create an InterruptIn connected to the specified pin

rise Attach a function to call when a rising edge occurs on the input

rise Attach a member function to call when a rising edge occurs on the input

fall Attach a function to call when a falling edge occurs on the input

fall Attach a member function to call when a falling edge occurs on the input

mode Set the input pin mode

Å Note: any digital input can be an interrupt except pin 19 and pin 20

External interrupts on the mbed

Å Exercise 4: Use the mbed InterruptIn library to toggle an LED whenever a
digital pushbutton input goes high.

Å You may notice some issues with this simple program, what are they?

15

#include "mbed.h"

InterruptIn button(p18); // Interrupt on digital pushbutton input p18

DigitalOut led1(p5); // digital out to p5

void toggle(void); // function prototype

int main() {

 button.rise(&toggle); // attach the address of the toggle

} // function to the rising edge

void toggle() {

 led1=!led1;

}

Switch debouncing for interrupt control

Å Exercise 4 doesnΩt work quite as expected; it is possible for the button to
become unresponsive or out of synch with the LED.

Å This is because of a common issue called switch or button bouncing. When
the button is pressed it doesnΩt cleanly switch from low to high, there is
some ΨbounceΩ in between as shown below:

Å It is therefore easy to see how a single button press can cause multiple
interrupts and hence the LED can get out of synch with the button.

Å We therefore need to ΨdebounceΩ the switch with a timer feature.

16

Ideal switch

response

Actual switch

response

Switch debouncing for interrupt control

Å Exercise 5: Use the mbed InterruptIn library to toggle an LED whenever a
digital input goes high, implementing a debounce counter to avoid
multiple interrupts.

17

#include "mbed.h"

InterruptIn button(p18); // Interrupt on digital pushbutton input p18

DigitalOut led1(p5); // digital out to p5

Timer debounce; // define debounce timer

void toggle(void); // function prototype

int main() {

 debounce.start();

 button.rise(&toggle); // attach the address of the toggle

} // function to the rising edge

void toggle() {

if (debounce.read_ms()>200) // only allow toggle if debounce timer

 led1=!led1; // has passed 200 ms

 debounce.reset(); // restart timer when the toggle is performed

}

Switch debouncing for interrupt control

Å By removing the bounces, the system acts as though the switch has an
ideal response.

Å This can be done by a variety of hardware and software methods.

Å An example of a classic hardware debouncer would be two cross-coupled
NAND gates form a very simple Set-Reset (SR) latch.

Å Another example of a software debouncer would be to look for a number
of sequential readings of the switch, e.g. if the input changes from 0 to 1
and then continues to read 1 for the next ten samples then the switch has
been pressed.

18

Ideal switch

response

Actual switch

response

