
Department of Informatics
Computer Science

Supervisor Ron Grau

Report 2020

Robot Control Interface
From Arduino to ARM Mbed

By Priyata Kaneria

Candidate:
168396

 2

Statement of originality

This report is submitted as part requirement for the degree of Computer Science at the
University of Sussex. It is the product of my own labour except where indicated in the text.
The report may be freely copied and distributed provided the source is acknowledged. I
hereby give permission for a copy of this report to be loaned out to students in future years.

Signed,

Priyata Kaneria

 3

Acknowledgements

Special thanks to Supervisor Ron Grau

 4

Contents
1. Introduction ... 5

2. Objectives ... 5

3. Background and Requirements Analysis ... 6

3.1 Primary Tasks ... 6

3.1.1. Code translation ... 6

3.1.2. Software Porting Investigation .. 7

3.1.3. Microcontroller board performance comparison.. 15

3.2 Secondary Tasks ... 16

3.3 Software Requirements Summary ... 17

4. Professional Considerations and Ethics .. 19

5. Project Management ... 20

5.1 Trello ... 20

6. System Design and Development ... 21

6.1. Initial Designs ... 21

7. System Building .. 23

7.1 Code translation .. 24

7.1.1 Pin Mapping .. 24

7.1.2 Name Counterparts ... 25

7.1.3 Similarities and differences of parameters and functionality 27

7.1.4 Requirements fulfilled .. 32

7.2 Software Porting Investigation ... 34

7.2.1 Programming Environments .. 34

7.2.2 Code translation observations ... 35

7.2.3 Hardware .. 37

8. Experiments .. 39

8.1 Experiment 1 – PushButton ... 39

8.2 Experiment 2 – ZumoBuzzer ... 39

8.3 Experiment 3 – ZumoMotor ... 39

8.4 Experiment 4 – Border Detect .. 39

8.5 Experiment 5 – Line Follower .. 40

8.6 Experiment 6 – Sumo Collision Detect ... 40

8.7 Experiment 7 – Compass .. 41

8.8 Timing Experiments ... 41

9. System Evaluation .. 42

10. Conclusion .. 43

References ... 44

Appendix ... 47

 5

1. Introduction

 Arduino is a prevalent platform in its use amongst hobbyists, but not so much
amongst professional engineers. Its popularity with hobbyists is largely due to the lack of
required knowledge to get started largely owing to its extensive official software libraries and
example code, supported by further such code written by the online community. This is why
it is a platform that is still widely used to drive plenty of devices and applications.

Arduino is an inexpensive, versatile platform seeing widespread application
particularly in an educational context. Unfortunately, the Arduino boards do have certain
limitations that make them not quite as preferred by professionals, as alternate controllers
that are Arduino-compatible can be more powerful due to their increased RAM, Flash
Memory and Clock Speed; widening the applications that can be supported. It is becoming
increasingly popular for devices currently running under Arduino to be used within IoT
applications, as exemplified by a hackster.io tutorial on using an Arduino MKR ENV Shield
with the Arduino IOT Cloud and Amazon Alexa to interact with the board’s sensors [1].
However, other boards have better IoT functionality from features including Bluetooth,
sdCard and WiFi abilities that are present on platforms such as Mbed. The Mbed solution
has more potential for growth in the long-term and is more suited for the future of IoT,
providing an excellent framework to develop cloud-connected devices.

One can switch to higher performing Arduino boards such as the Arduino Mega 2650
with 8KB of RAM and 256KB of Flash Memory, but this is still not as high as certain Mbed
boards and can have bigger and bulkier Printed Circuit Boards (PCBs), making it difficult to
fit them inside certain machines.

As it appears moving to higher functioning boards will be useful for this increasingly
IoT-based age, the problem one must consider is how to retire and replace previously used
out-dated hardware, and porting the implementations and valuable software solutions that
were running on them to a more advanced platform. The motivation of this project is to
explore this process.

2. Objectives

The ZUMO robot for the Arduino platform is well-established. Although ports have been
created for certain ARM Mbed platforms (e.g. the FRDM-KL25Z) there are currently none
specifically for the FRDM-K64F. Arduino UNO R3 is a microcontroller board based on the
ATmega328P microcontroller unit (MCU) [2], while the FRDM-K64F contains the power
efficient Kinetis K64F MCU [3].

The purpose of this project is to remove the Arduino UNO R3 microcontroller board
and translate its library codes (ZumoShield) [4] to create a C++ library that runs on the more
powerful ARM Mbed FRDM-K64F microcontroller board. It can then be used to control the
ZUMO robot and its components, sensors and actuators (LEDS, Pushbuttons, Motor Drivers,
Buzzer, Infrared Reflectance Sensors, Accelerometer, Magnetometer and 3-axis
Gyroscope). This report will evaluate the robot’s performance and functionality on both the
platforms and discuss the process and challenges faced during software porting.

 6

3. Background and Requirements Analysis

3.1 Primary Tasks

3.1.1. Code translation

The Arduino UNO R3 and FRDM-K64F MCUs are both programmed in C++ so the
specific translation of code is quite achievable due to the use of the same core language.
The point at which the code for each board diverges is when the programmer decides to use
certain functionality that is bespoke for either MCU. This occurrence is almost guaranteed
due to the communication with the boards being entirely via the pins; these pins having
entirely different names. Although the FRDM-K64F’s 32 outer pins are compatible with the
Arduino UNO R3’s pin layout, the pin names are still non-identical, therefore the programmer
will first and foremost have to modify the pin referred to in the Arduino code. The second
change will most likely be due to the custom function [5] that is called in order to instantiate
and initialise the signals with the pin, which again has a different name depending on the
board. Subsequently, it’s probable there will be further such custom functions that will need
to be adjusted by name and translated to match a similar such custom function - instead
referred to as APIs - in Mbed [6]. The only feature in this report referred to as an API in
Arduino is Wire, a library that comes installed with the IDE, similar to the I2C API in Mbed.

Huang and Runberg explain: “The Arduino language has 60 or so built-in (or
predefined) functions that make it easier for you to interact with hardware using simple,
single-line instructions... Behind the scenes, the digitalWrite() function consists of more than
20 lines of code. Most of that code is complex, but the digitalWrite() function is easy to
understand. Even when you understand a big sketch, typing 20 or more lines of code [when]
you want to turn an LED on or off is tedious and error prone [7].” To exemplify to
comparison, the corresponding custom function to digitalWrite() in Arduino is the API
DigitalOut() in Mbed. A more in-depth breakdown of these custom function and API
counterparts can be found in Section 7.1.2.

In summary, the ZumoShield library will be translated including its header files(.h)
and source files(.cpp). The header files are interface-like while the source files provide an
implementation of key features of the Zumo robot that are essential for its usage. Table 1
shows the header and corresponding source files (if any) for the ZumoShield library files that
must be ported for use on the FRDM-K64F.

Header files(.h) Source files(.cpp)

L36.h L3G.cpp

LSM303.h LSM303.cpp

PololuBuzzer.h PololuBuzzer.cpp

Pushbutton.h Pushbutton.cpp

QTRSensors.h QTRSensors.cpp

ZumoMotors.h ZumoMotors.cpp

ZumoBuzzer.h

ZumoReflectanceSensorArray.h

 7

ZumoShield.h

 Table 1 ZumoShield header and source files

Additionally, the example code within the library will also be translated as they

contain control over features that will prove vital for comparing the performance and
functionality of the two microcontroller boards. The example code files(.ino) are listed below.

o BorderDetect
o Compass
o LineFollower
o MazeSolver
o PushbuttonExample
o QTRAExample
o QTRARawValuesExample
o QTRRCExample
o QTRRCRawValuesExample
o RCControl
o SensorCalibration
o SumoCollisionDetect
o ZumoBuzzerExample
o ZumoMotorExample

3.1.2. Software Porting Investigation

The main focus on the programming end is to explore the concept of “software
porting”; investigating the process of adapting software for use on an alternate platform to
the one it was originally designed to execute on. I.e. altering software for it to be usable in
different environments. Grover explains: “The method of porting Software comprises
receiving a set of code operable in a first operating environment. The method further
comprises converting the set of code into a class. The method further comprises providing
the converted set of code operable in a second operating environment [8].” Notable
solutions, findings and challenges during the process of software porting have been
documented and concluded in Section 7.1 & 8 of this report.

❖ Language considerations

Others have already evaluated the process of translating code from an Arduino MCU
to an ARM Mbed MCU. Considering their discussions and findings is of significant use for
being cognisant of important aspects of software porting before commencing the project.
One such investigation includes the porting of software from an Arduino Mega 2560 R3 to
Mbed NXP LCP1768 [9]. The author of this s-lab article states that the code is much cleaner
working in Mbed, describing code on Arduino to be chunky as most programmers will situate
all of their code in one file. The reason for this is due to library creation being notably
arduous in Arduino, facilitating a simpler, more C-style of programming (C++’s predecessor)
despite Arduino running machine code that has been compiled from the higher language of
C++. C has an imperative (structural) paradigm, and this is the level programmers using
Arduino are usually limited to, as they end up using more unnecessary computational steps.
Ergo, C++ on Mbed is generally cleaner and more modular.

Despite this, the ZumoShield library does not seem affected by the difficult interface
of the Arduino IDE. The library takes full advantage of C++’s Object-Oriented paradigm,
making it better organised. This also makes it ideal for facilitating the additional functionality
of the FRDM-K64F, which uses the same language on Mbed. C++ follows bottom-up
programming, supporting a structure focused on hierarchies.

 8

The s-lab article also draws attention to the advantages of the Arduino online
community [9]. They highlight that there is an assortment of various implementations for the
same endeavoured outcome of a program required on the Arduino Software (IDE) platform,
a key advantage of most open source technologies. Unfortunately, they also claim that these
code examples generally work but can frequently be poorly coded, contain copious bugs, or
be rather unoptimised even if they are found directly on the Arduino website. Alternatively,
the online Mbed community is significantly smaller but nevertheless consists of more
advanced programmers. He advises that the (now deprecated) Mbed Handbook [12] and
Cookbook [13] provided can be of valuable assistance, enabling one to import code directly
into the IDE for testing, yet lacking in the sheer selection of code examples potentially
required for one’s project that are abundant in Arduino. This deficiency can still be
counteracted due to the fact that C++ is one of the most utilised languages at this juncture,
making it possible to discover one’s preferred means of completing a task despite it requiring
extra exertion in contrast to more relevant online solutions.

Yiu, author of ‘The definitive guide to the ARM Cortex-M0’ and staff engineer at ARM
Ltd. explicates, “In 8-bit and 16-bit microcontroller programming, the peripherals control is
usually handled by programming to registers directly. When using ARM microcontrollers,
many microcontroller vendors provide device driver libraries to make use of the
microcontroller easier. You can use these library functions to reduce software development
time or write to the hardware registers directly if preferred. If you prefer to program the
peripherals by accessing the registers directly, it is still beneficial to use the header files in
the device driver library as these have all the peripheral registers defined and can save you
time preparing and validating the code.” [14]

❖ Programming Environments

Additionally, one must consider the key similarities and differences in the
programming environment for the two microcontrollers as their structure is developed to
support the unique functionality of both boards. These environments are provided by Arduino
and ARM Mbed, namely the Arduino Software (IDE) supporting any Arduino board [15] and
the Mbed OS doing the same for Mbed boards. “The Arduino Uno is programmed using
the Arduino Software (IDE), our Integrated Development Environment common to all our
boards and running both online and offline” [16]. Once the board is specified both IDE’s
include built-in support for them, Arduino using the “Boards Manager”. This board manager
“sets the parameters (e.g. CPU speed and baud rate) used when compiling and uploading
sketches; and sets the file and fuse settings used by the burn bootloader command” [17].
The FRDM-K64F is “fully supported in the mbed platform, so it gets access to the free tools
and SDK that provides experienced embedded developers with powerful and productive
tools for building proof-of-concepts” [5].

The main similarity between the two IDEs, as mentioned earlier, is the almost
mirrored available custom functions and APIs provided, with equally similar names that
make the process of software porting smoother. A key aim is to be aware of the native
capabilities of both platforms and their pre-defined functions in order to focus on the best

 Arduino Mega 2560 R3 Mbed NXP LPC1768

Price €35 €46.96

Flash Memory 256KB 512KB

Clock Speed 16MHz 96MHz

RAM 8KB 32KB

EEPROM 4KB Entire flash memory can be
used

Pins 54 40

Table 2 Tech specs [10] (data updated by author to match with current information)

http://www.elsevier.com/wps/find/bookdescription.cws_home/724982/description#description
http://www.arm.com/
http://www.arm.com/
https://www.arduino.cc/en/Main/Software
https://create.arduino.cc/editor

 9

way to execute the desired functionality instead of focusing on the manner in which it was
originally coded. This proves especially important for the author in terms of time saving, as
explained in the upcoming Section 8. The author became too concerned with the minor
differences in the pre-defined functions, focusing on how to exactly replicate them instead of
looking at what was already provided in terms of functionality on the Mbed platform instead.

The Mbed platform contains unique features that enable it to be a basis for low-
power systems, such as the RTOS library that allows one to run multiple independent
threads making the code design much simpler. Rather than having one big main loop that
handles all the implementation, the code for separate tasks can be split into threads. The
Mbed OS also has Cloud capabilities that are already integrated, allowing one to seamlessly
transfer data from the device to the cloud and aggregate it using one of ARM’s cloud
partners. It maintains a TCP/IP stack and Socket API on top of multiple transports (Ethernet,
WiFi and 3G) [18] and a scheduler for ensuring tasks get their appointed run-time. It also
includes a hypervisor, namely the PSA-compliant SPM, to separate different tasks, creating
and managing independent secure partitions on Arm Cortex®-M microcontrollers so that
user-tasks cannot compromise the security of the complete system. Mbed explains, “It
increases resilience against malware”, because if someone breaks into a complicated RF
stack on one’s system, they will find it difficult to gain access to the rest of the system. They
continue, “…[it also] protects secrets from leaking between different modules in the same
application [19].” This capability also opens up the possibility of running user generated or
insecure code on the devices, as the SPM will ensure that it only takes granted resources
and cannot access secure information such as cryptographic keys. These features are
critical for IoT applications.

Arduino does not contain a debugger for checking scripts. On one hand this is
suitable for inexperienced developers but on the other an experienced developer would
much rather have a debugger; this missing feature is often an impediment to Arduino being
taken seriously. Similarly, the Mbed OS online IDE also has this feature missing, but
alternatives lie in the other desktop IDEs available such as the ARM Mbed CLI (a Python-
based tool) and ARM Mbed Studio (a fairly new desktop IDE that was still in public beta
mode at the start of 2019, taking feedback from alpha testers). For this reason, the author
programmed this project using Mbed Studio, keeping in mind that there may be a few bugs
due to its recent release.

The s-lab article [9] determines that, albeit the simplicity of the Arduino Software
(IDE) on the basis of its handful of features, it is dependable and well-established. They
instead liken the Mbed OS online IDE to a platform that is in a somewhat more beta stage of
development rather than a finalised product. This is demonstrated through instances such as
a high potential for crashes of the IDE to occur if the internet connection is lost, and goes on
to propose that perhaps it is worth taking a look at alternatives to the online IDE to overcome
this issue.

Nevertheless, they point out a crucial component of the Mbed OS online IDE which is
the ease it provides in library creation and Object-Oriented practices. This is efficacious in
enabling a team of programmers to work collectively on the same project, as each team
member can work on their own module in their separate set of files. This is in contrast to
Arduino which, as mentioned above, makes it rather challenging to create a library as it does
not encourage exploiting convenient Object-Oriented programming practices. This is
because the IDE does not let the programmer open any library files such as .h or .cpp files
that are integral to C++ library programming, and only lets the user open example “sketches”
in .ino format. Again, despite these limitations with the IDE, the ZumoShield library has
multiple instances of Object-Oriented programming. This may have been achieved by the
library having been written on another platform entirely and then transported back and forth
between the Arduino IDE for testing. This confirms that the Arduino IDE does not
accommodate projects that may be undertaken by more professional developers. The s-lab
article concludes that the Arduino Software (IDE) is markedly more solid in regards to
reliability, while the Mbed OS online IDE is imperative for large projects with prodigious
amounts of code and multiple contributors.

 10

Lim presents another perspective that shares a likeness to the one above,
expounding that the Mbed online IDE lacks straight-forwardness and is laborious when
attempting to determine “how the pins are defined for each board” [20]. Likewise he
disapproves of the platform’s dependency on an internet connection, stating, “…I don't want
to necessarily depend on it to compile my code.” He goes on to suggest PlatformIO as an
offline option, stating, “It is also less cumbersome than the mbed drag-and-drop method.”
The Mbed online IDE uses a custom boot loader and appears as a USB flash drive when
plugged into the computer via the USB port. One must then compile their code using the
online IDE, download the .hex file and copy it to the Mbed, resulting in time consumption.
Both of the above viewpoints can be solved by using ARM Mbed CLI or ARM Mbed Studio.

Styger’s experiment is one closely related to the one carried out in this project. He
programmed the FRDM- KL25Z to be usable with the Zumo robot instead of an Arduino
board in the CodeWarrior IDE using Processor Expert [21]. NXP, creators of Freedom
boards state, “Processor Expert® technology is a development system to create, configure,
optimize, migrate, and deliver software components for our silicon. Processor Expert
technology makes it much easier for [one] to deal with the low level intricacies of a hardware
platform in an optimal manner... [One] design[s] custom peripheral drivers ideally suited to
[their] needs, without having to know everything about the hardware” [22]. However,
Processor Expert has been replaced by its successor, the MCUXpresso Configuration Tools,
since Styger published his article in 2013. The NXP official Getting Started with the FRDM-
K64F guide lists the MCUXpresso Software Development Kit (SDK) + IDE and ZephyrTM OS
as recommended development paths, of course accompanied by ARM Mbed [23].

Finally, one gets no real experience of professional development tools with Arduino.
If one starts their journey of micro-controllers with Arduino then it will becomes increasingly
difficult to make complex intelligent circuitries in the future. Porting over to FRDM-K64F is a
useful learning process for any engineer if they would like a deeper understanding of
circuitry.

❖ Hardware

It is important to consider the pin configurations which differ marginally between the
microcontroller boards. The pinout diagrams show the layout of the pins (which make up
ports); the Arduino UNO R3 containing 32 pins shown in Figure 1 and FRDM-K64F
containing 64 shown in Figure 2. The pins on each board are laid out in a similar manner
particularly with the 32 outer pins of the FRDM-K64F, due to it containing, “Form-factor
compatible with the Arduino® UNO Rev3 pin layout” [24]; which greatly assists in
understanding the parallels between the pin signals in order to match and adapt functionality
from one board’s pins to another: easing the process of software porting. The crucial
distinction in regards to the hardware is the additional functionality provided by the 32 extra
inner pins of the FRDM-K64F. That being said, this does not have any implications on the
software porting itself, but more so on the optional requirements set out in this report such as
testing the difference in the functionality of the Zumo robot between the two boards by
writing further code that utilises the potential extra functionality from the additional pins.
Figure 3 illustrates the mapping between Arduino pins and ATmega328P ports [2]. To
elucidate, these board pins correspond to the component leads extending from each of the
four sides of the ATmega328P, depicted in the pinout diagram in Figure 4. On the other
hand, “The freedom board headers enable up to 64-pins and give access to most of the
Kinetis K64F signals. Outer row pins deliver right signals to meet Arduino R3 standard, the
inner row is connected to up to 32 additional Kinetis K64F pins” [3]. Figure 5 indicates the
Kinetis K64F microcontroller signal connections with the board components (RGB LED,
Motion Sensors) and extension sensors (SD Card, Bluetooth, WiFi); specifying the pin
names required in order to communicate with them. The named pins in this diagram
correspond to just a few pins of the 144 total pins in the Kinetis K64F MCU, presented in
Figure 6.

https://mcuoneclipse.com/2017/11/25/eclipse-mcuxpresso-ide-10-1-with-integrated-mcuxpresso-configuration-tools/

 11

Figure 1 Arduino Uno Pin Diagram [25]

Figure 2 Arduino and NXP Header Pinout [3]

 12

Figure 3 ATmega328P - Arduino Pin Mapping [26]

Figure 4 ATmega328P Pinout (Figure1-1 [27])

 13

Figure 5 FRDM-K64F Additional Peripherals [3]

 14

Figure 6 144 LQFP K64 Pinout Diagram (Figure 37 [28])

During Styger’s process, he took note of strategic tactics he could implement to make
the debugging process more convenient, advising, “Generate bread crumbs for debugging:
used the command line shell built-in, transmitted messages over Bluetooth, or using an
extended USB cable”. For this maze experiment he also warns to, “Never underestimate
problems with sensors. Depending on the laser printer and paper used, the reflections were
different…”, causing misperception on the cause of the occasional sensor unreliability [29].
This was also due to the use of laser printing to create the black lines for the Zumo robot to
follow instead of black tape which could hypothetically cause less reflection.

The author will note the general, Arduino or Mbed specific, and Arduino UNO R3 and

FRDM-K64F microcontroller board specific challenges and significant phases of the process
of software porting in Section 8.

 15

3.1.3. Microcontroller board performance comparison

Table 3 indicates the technological specifications for the two boards, the data
indicating that the FRDM-K64F would yield faster results and be generally more powerful
with potentially superior functionality. The assumption is that the increased RAM, Flash
Memory, and Clock Speed will cause the code to run without crashing, giving better
accuracy of data and more control of the robot. The final requirement of the project will be to
investigate and test the boards to see if these assumptions hold true.

A list is presented below depicting examples of types of experiments that will be carried out
in order to fulfil the investigation.

Concepts evaluated when comparing boards:

o Timing

 Compile time - indicates which IDE or compiler is more efficient for executing
software and therefore which board might be faster due to its IDE

 Time Complexity of programs on either board – computational steps

 Robot response time
o Functionality – the variety of useful functions that can be implemented and directly

compared for each board

 FRDM-K64F’s 6-axis combo Sensor Accelerometer and Magnetometer [30]
vs. Arduino UNO R3 with just these sensors provided on Zumo

➢ This will be achieved by directly comparing the SumoCollisionDetect
example code on each board. The author bought a second Zumo
robot in order to accurately compare the difference in their
performance.

 Whether the additional inner 32 pins on the FRDM-K64F board can enhance
functions performed by the Zumo robot in contrast to the Arduino board

o Comparing the quality of execution of the sensors that come with ZUMO incl. [31]

 Reflectance sensor array (infrared QTR sensors) e.g:
➢ to test how accurately it can follow a line [32]
➢ to test which board performed better at border detection
➢ using the compass example to compare the performance of the

robot coordinating 90 degree turns and driving in squares

 Arduino UNO R3 FRDM-K64F

Price €20 €31.64

Flash Memory 32KB 1024KB

Clock Speed 16MHz 120MHz

RAM 2KB 256KB

EEPROM 1KB Entire flash memory can be
used

Pins 28 32 (64 including inner and
outer)

Table 3 Tech Specs for Arduino Uno R3 & FRDM-K64F

 16

3.2 Secondary Tasks

Objectives that would appear further than the time limit include:
o Creating original functions to portray functionality that is unique to the FRDM-K64F

board in order to document what abilities the Zumo robot is capable of on this board
in contrast to Arduino UNO R3

 This includes the use of FRDM-K64F’s RGB LED, SD Card, Bluetooth, Wifi
that is not available on the Ardunio UNO R3

 The additional 32 inner pins on the FRDM-K64F have connections to these
components. Also valuable to test what other signals and capabilities these
pins uniquely provide to the Zumo robot

o Connecting an RC servo and receiver to both boards and turning the Zumo into a
radio-controlled vehicle, again comparing the performance

 17

3.3 Software Requirements Summary

A summary of the mandatory and optional requirements of the software
implementation will now be presented below as a result of the above requirements analysis.

Mandatory Requirements Justification
Translate L36.h and L36.cpp from Arduino
for use on FRDM-K64F

Interfaces with and enables reading of raw
data from 3-axis gyros

Translate LSM303.h and LSM303.cpp from
Arduino for use on FRDM-K64F

Interfaces with and implements compass and
accelerometer

Translate PololuBuzzer.h and
PololuBuzzer.cpp from Arduino for use on
FRDM-K64F

Enables the buzzer

Translate Pushbutton.h and Pushbutton.cpp
from Arduino for use on FRDM-K64F

Enables the Pushbutton

Translate QTRSensors.h and
QTRSensors.cpp from Arduino for use on
FRDM-K64F

Implements the reflectance sensors

Translate ZumoMotors.h and
ZumoMotors.cpp from Arduino for use on
FRDM-K64F

Implements motor control

Translate ZumoBuzzer.h from Arduino for
use on FRDM-K64F

A trivial subclass of PololuBuzzer

Translate ZumoReflectanceSensorArray.h
from Arduino for use on FRDM-K64F

Provides an interface for using a Zumo
Reflectance Sensor Array and provides
access to the raw sensor values as well as to
high level functions including calibration and
line-tracking

Translate ZumoShield.h from Arduino for
use on FRDM-K64F

A subclass of many of the above

Translate example code BorderDetect from
Arduino for use on FRDM-K64F

Example code for detecting a white border
on a black surface

Translate example code Compass from
Arduino for use on FRDM-K64F

Example code for making use of the
compass features

Translate example code LineFollower from
Arduino for use on FRDM-K64F

Example program that demonstrates how a
Zumo can be programmed to follow lines
with a reflectance sensor array and run a
line-following course.

Translate example code MazeSolver from
Arduino for use on FRDM-K64F

Example code for implementing the solving
of a maze

Translate example code
PushbuttonExample from Arduino for use
on FRDM-K64F

Example code for implementing the use of
the pushbutton

Translate example code SensorCalibration
from Arduino for use on FRDM-K64F

This example is in order to calibrate the
Reflectance Sensor Array with its
surroundings

Translate example code
SumoCollisionDetect from Arduino for use
on FRDM-K64F

Example code to test the robot’s collision
detection

Translate example code
ZumoBuzzerExample,
ZumoBuzzerExample2 and
ZumoBuzzerExample3 from Arduino for use

Example code in order to test the buzzer

 18

on FRDM-K64F
Translate example code
ZumoMotorExample from Arduino for use
on FRDM-K64F

Example code in order to test the motor and
drive the robot

Table 4 Requirements summary of primary objectives

Optional Requirements
Translate example code QTRAExample,
QTRARawValuesExample, QTRRCExample,
and QTRRCRawValuesExample from
Arduino for use on FRDM-K64F
Creating original examples that only support
FRDM-K64F specific functionality e.g. RGB
LED, SD Cards, Bluetooth, WiFi, and other
FRDM-K64F pin signals

Translate example code RCControl from
Arduino for use on FRDM-K64F while
connecting an RC servo receiver to Arduino
UNO R3 and FRDM-K64F

Table 5 Requirements summary of extension objectives

 19

4. Professional Considerations and Ethics

This project meets all the specified ethical requirements outlined in the Ethical
Compliance Form attached in the appendix, as above all it will not involve any other
members of the public save for this report’s author and supervisor Ron Grau. The health,
privacy, security and wellbeing of the two of us and the environment will not be impacted by
the investigations on the Zumo robot as it has a negligible and inconsequential effect on its
surroundings. This is due to the fact that it does not have access to or collect personal data
from either of us, nor does it have sharp enough edges or a substantial power supply to
cause physical harm or injury as “the Arduino’s regulated 5V and 3.3V voltages supply
power to the motor driver logic, buzzer circuit, and compass module on the Zumo Shield”
[31]. The experiments will be conducted in a contained environment comprising of a small
black surface such as a Dohyo (a wooden battle arena for Robot Sumo) portrayed in Figure
7 below or white sheets of paper as shown in Figure 8. As a result neither discrimination nor
malpractice against Third Parties can occur, participants will not be exposed to any risks
greater than those encountered in their normal working life and all relevant legislative and
regulatory requirements will be met.

Figure 7 A Zumo Robot in a test arena for evaluating
movement and IR sensors [31]

The study materials comprise of software running on standard hardware, as indicated

via the use of the the well-established ZumoShield robot, Arduino UNO R3 and FRDM-K64F
boards. The work undertaken in this project is within the professional competence of the
author as it utilises an array of expertise provided by the author’s Computer Science
undergraduate degree, including the training of C++ during their foundation year. The
author’s professional knowledge will continue to be developed for the duration of the project
due to the length of the degree course. The author will also make it a priority to
independently find answers to fill gaps in their knowledge and will ensure any further
research and references provided in the final report are up to date. Furthermore, the value of
the extensive insight possessed by the author’s supervisor will also be an aid in maintaining
awareness of any technological updates, developments or standards that may be relevant
and important for the investigation. The author will also have the opportunity to obtain
alternate viewpoints and criticism from the supervisor which will be respected and always
taken into account. Conclusively having discussed this in length with given supervisor, it has
been agreed that no ethical review or ethical compliance form will be required.

Figure 7 A Zumo Robot in a test arena for evaluating movement and IR sensors [31]

Figure 8 Maze for Zumo Robot [29]

Figure 8 Maze for Zumo Robot [29]

 20

5. Project Management

5.1 Trello

Figure 9 Trello board, the online project organiser

The author has been communicating and planning the project with their supervisor on

the Trello platform and will continue to do so for the entirety of the project. It is a useful
platform which consists of a board, as depicted in Figure 9, in order to organise all upcoming
tasks in laid out sections and share completed work along while being able to present any
questions for the supervisor or clarifications required from the supervisor. Reminders are
also a feature available on this platform which aids in keeping up with deadlines.

 21

6. System Design and Development

6.1. Initial Designs

Figure 10 UML diagram showing ZumoBuzzer as the subclass of PololuBuzzer

 22

Figure 11 UML diagram showing the inheritance of ZumoShield

 23

7. System Building

The use of class instantiations within each example goes as follows:

o PushbuttonExample: i) Pushbutton
o ZumoBuzzerExample: i) Pushbutton

 ii) ZumoBuzzer
o ZumoMotorExample: iii) ZumoMotors
o BorderDetect: i) Pushbutton

 ii) ZumoBuzzer
 iii) ZumoMotors
 iv) QTRSensors
 v) ZumoReflectanceSensorArray

o LineFollower: i) Pushbutton
 ii) ZumoBuzzer
 iii) ZumoMotors
 iv) QTRSensors
 v) ZumoReflectanceSensorArray

o SumoCollisionDetect: i) Pushbutton
ii) ZumoBuzzer
iii) ZumoMotors
iv) QTRSensors
v) ZumoReflectanceSensorArray
vi) LM303

This therefore encouraged the system requirements to be built in this order:

1. ZumoShield.h
2. ZumoBuzzer.h
3. Pushbutton.h
4. millis.h
5. millis.cpp
6. Pushbutton.cpp
7. PushbuttonExample.cpp
8. PololuBuzzer.h
9. PololuBuzzer.cpp

10. ZumoBuzzerExample.cpp
11. ZumoMotors.h
12. ZumoMotors.cpp
13. ZumoMotorExample.cpp

This aided in building the system step-by-step, coding it in a way that ensured that

when building a new piece of example code, the other included classes required to run this
code correctly were already developed beforehand. The L3G gyroscope class was not
included in any example code of the ZumoShield library, so the ordering for this requirement
was arbitrary.

The author had originally planned on building the system in the Mbed OS online IDE.
However, the Mbed Studio proved to be of better use in regards to its offline coding
capabilities. Moreover, the compiled file does not need to be uploaded using drag and drop
but instead through the IDE itself, proving to be more efficient as suggested in the
background research. The author also preferred the layout and graphics in terms of
managing the system, as the Mbed Studio has a more professional appearance. In addition,

14. QTRSensors.h
15. QTRSensors.cpp
16. ZumoReflectanceSensorArray.
17. BorderDetect.cpp
18. LineFollower.cpp
19. MazeSolver.cpp
20. LM303.h
21. LM303.cpp
22. L3G.h
23. L3G.cpp
24. SumoCollisionDetect.cpp
25. SensorCalibration.cpp
26. compass.cpp

 24

this pairs with the desktop IDE selected for Arduino, the Arduino Software (IDE), which could
also have been its online counterpart, Arduino Web Editor.

7.1 Code translation

The process of building the Mbed system started off by opening the Arduino library
files inside the Mbed studio, the primary action being to add an include for the “mbed.h” file.
The next procedure was to create an int main() function and place a call to the Arduino
example’s setup() and loop() functions, situating the latter in an infinite while loop. The
Arduino compiler holds a call to these two functions behind the scenes but in Mbed these
calls must be stated. Accordingly, it was clear what the distinctions between the two
compilers were simply due to the visible errors, leaving the rest of the code reusable.

7.1.1 Pin Mapping

In order to alleviate the struggles faced due to the complications caused by porting
software between two microcontroller platforms, the primary task is to identify and
understand the corresponding pin signals between the two boards. Modifying the pin names
referred to would correct one of the first errors evident in any example. In regards to the
corresponding signals between the Arduino Uno R3 and the FRDM-K64F microcontrollers, a
clear mapping has hitherto not been available online. As a result, the author formed Figure
12 below to make this abundantly clear. The diagram was based on the official FRDM-K64F
Rev 3 pin multiplexing spreadsheet [33] provided on the Mbed website [3], plotting the
mirrored signals in relation to their equivalent locations. This illustration is a vital stage in the
process of software porting, proving to be a valuable aid in building the system.

Figure 12 Arduino R3 to FRDM-K64F pin mapping

 25

7.1.2 Name Counterparts

Many of the remaining errors could be corrected by replacing pre-defined Arduino
functions with, as explained in previous chapters, an equivalent Mbed counterpart – a pre-
defined API. A major technical difficulty was fine-tuning the code to exactly replicate the
Arduino functionality, as even the almost identical Mbed counterparts do not necessarily
have the exact same capabilities or resulting values. The online Mbed forums were of great
assistance when attempting to amend this, facilitating in mirroring the code accurately.
Consequently, following the completion of each example code, a great deal of testing and
adjusting of code was implemented. A struggle for the author was to grasp when this was
significant in terms of reaching the desired outcome or whether the resultant behaviour
would work effectively regardless, as an exact imitation was not always necessary. For
example, the Arduino function millis(), “returns the number of milliseconds passed since the
Arduino board began running the current program. This number will overflow (go back to
zero), after approximately 50 days [34].” In order to mirror this behaviour in Mbed one must
utilise the Timer API, as depicted below in Table 6. To replicate the time being recorded
since the board started running the current program, this is best achieved by placing a
timer.start() as the first instruction in your Mbed int main() function. However, the author
misplaced their focus on duplicating the timer overflowing after 50 days. This was a mistaken
priority as it was uncovered that millis() would simply be used to record short periods of time
in the scope of the ZumoShield library, thus resetting the value after 50 days would not be
required.

A clear list of discrepancies between the two IDEs that one should be aware of in
order to ease the process of going from Arduino to Mbed is listed below in Table 6 and 7.

Arduino Mbed Functionality
pinMode(pin, INPUT); DigitalIn myled(pin,

mode)
Configures the specified pin to
behave as a digital input.

analogRead(pin) analogIn(pin); Reads the external voltage from
the specified analog pin.

digitalRead(pin) myled.read(); Reads the value of a specified
digital input pin

pinMode(pin, OUTPUT); DigitalOut
myled(pin, value)

Configures the specified pin to
behave as a digital output.

analogWrite(pin) PwmOut(pin); Writes an analog value (PWM
signal) to a pin

DigitalWrite(pin, value); myled.write(value) Writing a value to a digital output
pin, setting its state

#include <Wire.h> I2C i2c(I2C_SDA,
I2C_SCL)

Provides I2C functionality and is
used to communicate with I2C
(Inter-Integrated Circuit) devices
such as serial memories, sensors
and other modules or integrated
circuits.

Wire.begin(address); i2c.start(); Initiates and creates a start
condition on the I2C bus

Wire.requestFrom(address,
quantity, stop);
While(Wire.available())
{
 Wire.read();
}

i2c.read(address,
*data, length,
repeated=false);

Reads from an I2C slave. Used
by the master to request bytes
from a slave device. Performs a
complete read transaction.

Wire.beginTransmission(address); i2c.write(); Begins a transmission to

https://os.mbed.com/docs/mbed-os/v6.1/mbed-os-api-doxy/classmbed_1_1_i2_c.html

 26

Wire.write(value); the I2C slave device.
Subsequently writes a single byte
out on the I2C bus from a slave
device in response to a request
from a master.

Wire.beginTransmission(address);
Wire.write(data, length);

i2c.write(address,
*data, length,
repeated=false);

Begins a transmission to
the I2C slave device with the
given address. Subsequently
writes an array of bytes to
an I2C slave and queues bytes
for transmission from a master to
slave device.

Wire.endTransmission(); i2c.stop(); Ends a transmission to a slave
device and creates a stop
condition on the I2C bus.

Serial.begin(speed); static
BufferedSerial
serial_port(USBTX,
USBRX, baud);

Creates a serial port and sets the
data rate in bits per second
(baud) for serial data
transmission.

Serial.print(); printf(); Prints data to the serial port as
human-readable ASCII text.

Serial.println(); printf(“……..\n”); Prints data to the serial port as
human-readable ASCII text
followed by a carriage return
character (ASCII 13, or '\r') and a
newline character (ASCII 10, or
'\n').

Byte unsigned char Stores an 8-bit unsigned number,
from 0 to 255, that represents a
character in ASCII

delay(ms); wait_ms(ms); Pauses the program for the
amount of time (in milliseconds)
specified as parameter. (There
are 1000 milliseconds in a
second.) These functions spin the
CPU to produce a small delay so
they should only be used for short
delays.

randomSeed(seed); srand(seed); Initialises the pseudo-random
number generator, causing it to
start at an arbitrary point in its
random sequence.

millis(); Timer timer;
timer.start();
millis =
timer.read_ms();

These do not have equivalent
functionality but can both be used
to track how much time has
passed in milliseconds

micros(); Timer timer;
timer.start();
millis =
timer.read_us();

These do not have equivalent
functionality but can both be used
to track how much time has
passed in microseconds

Table 6 Name counterparts

https://os.mbed.com/docs/mbed-os/v6.1/mbed-os-api-doxy/classmbed_1_1_i2_c.html#aeb2e6757a3348668fa25d43f7932f78e
https://os.mbed.com/docs/mbed-os/v6.1/mbed-os-api-doxy/classmbed_1_1_i2_c.html
https://os.mbed.com/docs/mbed-os/v6.1/mbed-os-api-doxy/classmbed_1_1_i2_c.html

 27

7.1.3 Similarities and differences of parameters and functionality

Arduino Parameters (incl.

bespoke functionality
and returned values)

Mbed Parameters (incl.

bespoke functionality
and returned values)

pinMode(pin, INPUT); pin: the Arduino pin
number to set the
mode of.
mode: INPUT, OU
TPUT,
or INPUT_PULLUP

DigitalIn
myled(pin, mode)

pin: DigitalIn pin to
connect to
mode (optional): The
initial mode of the
pin: PullUp,
PullDown, PullNone,
OpenDrain. The
mode is
automatically set to
input if nothing is
specified.

analogRead(pin); pin: the name of
the analog input
pin to read from
(A0 to A5).

It will map input
voltages between 0
and the operating
voltage(5V or 3.3V)
into integer values
between 0 and
1023.

analogIn(pin); pin: AnalogIn pin to
connect to

AnalogIn() reads the
voltage as a fraction
of the system voltage
from 0 to 1. For
example, if you have
a 3.3V system and
the applied voltage is
1.65V,
then AnalogIn() read
s 0.5 as the value.

digitalRead(pin) pin: the Arduino pin
number you want to
read.
The value returned
is either HIGH or
LOW.

myled.read() Read the input,
represented as 0 or 1
(int)

pinMode(pin, OUTPUT);

pin: the Arduino pin
number to set the
mode of.
mode: INPUT, OU
TPUT,
or INPUT_PULLUP
It is not possible to
set the value of the
pin at this stage

DigitalOut
myled(pin, value)

pin: DigitalOut pin to
connect to
value (optional): the
initial pin value.
The mode will
automatically be set
to output. It is
possible to
immediately set the
value of the pin at
this stage

analogWrite(pin, value); pin: the Arduino
pin to write to.
Value (int): the
duty cycle:
between 0 (always
off) and 255
(always on).

PwmOut
myled(pin);

myled.period(sec
onds);

myled.write(value
);

pin: PwmOut pin to
connect to

seconds: Change
the period of a PWM
signal in seconds
(float) without
modifying the duty

 28

cycle

value: A floating-
point value
representing the
output duty-cycle,
specified as a
percentage. The
value should lie
between 0.0f
(representing on 0%)
and 1.0f
(representing on
100%).

Use the PwmOut
interface to control
the frequency and
duty cycle of a PWM
signal.

DigitalWrite(pin, value); Write a HIGH or

a LOW value to the

pin.

myled.write(value
)

Set the pin logic level
to 1 or 0

#include <Wire.h> This is a library. It
reads addresses as
7 bits.

I2C i2c(I2C_SDA,
I2C_SCL)

This is an API. It
reads addresses as 8
bits, so bits need to
be shifted over by 1
when going from
Arduino to Mbed.

Wire.begin(address); The argument is a 7-
bit slave
address(optional); if
not specified, join
the bus as a master
instead of a slave.

i2c.start();

Wire.requestFrom(addre
ss, quantity, stop);
While(Wire.available())
{
 Wire.read();
}

address: the 7-bit
address of the
device to request
bytes from
quantity: the
number of bytes to
request
stop (Boolean): true
will send a stop
message after the
request, releasing
the bus. false will
continually send a
restart after the
request, keeping the
connection active.
This argument
mirrors the
corresponding

i2c.read(address,
*data, length,
repeated=false);

address: 8-bit I2C
slave address. The
bottom bit of the
address is forced to 1
to indicate a read.
data: Pointer to the
byte-array to read
data in to
length: Number of
bytes to read
repeated: Repeated
start, true – don’t
send stop at end
default value is false.
Returns: 0 on
success (ack),
nonzero on failure
(nack)

 29

Mbed repeated
argument in read().
available() returns
the number of bytes
available for retrieval
with read(), which
reads a byte that
was transmitted from
a slave device to a
master or was
transmitted from a
master to a slave.
Returns: The next
byte received

Wire.beginTransmission(
address);
Wire.write(value);

Begins transmission
to the given 7-bit I2C
slave device
address. Sends a
value as a single
byte.

i2c.write(data); Writes a single byte
of data out on the
I2C bus. Returns: '0' -
NAK was received '1'
- ACK was received,
'2' - timeout

Wire.beginTransmission(
address);
Wire.write(data, length);

Begins transmission
to the given 7-bit I2C
slave device
address.
data: an array of
data to send as
bytes
length: the number
of bytes to transmit.
Returns: the number
of bytes written.

i2c.write(address,
*data, length,
repeated=false);

Transmits the bytes
that are queued.
Performs a complete
write transaction.
address: 8-bit I2C
slave address. The
bottom bit of the
address is forced to 0
to indicate a write.
data: Pointer to the
byte-array data to
send
length: Number of
bytes to send
repeated: Repeated
start (bool), true – do
not send stop at end
and default value is
false.
Returns: 0 on
success (ack),
nonzero on failure
(nack)

Wire.endTransmission(); Accepts a boolean
argument changing
its behaviour for
compatibility with
certain I2C devices.
If true,
endTransmission()
sends a stop
message after
transmission,
releasing the I2C

i2c.stop();

https://www.arduino.cc/en/Reference/WireRead
https://os.mbed.com/docs/mbed-os/v6.1/mbed-os-api-doxy/classmbed_1_1_i2_c.html#aeb2e6757a3348668fa25d43f7932f78e

 30

bus. If false,
endTransmission
sends a restart
message after
transmission. The
bus will not be
released, which
prevents another
master device from
transmitting between
messages. This
allows one master
device to send
multiple
transmissions while
in control. The
default value is true.
This is similar to
the repeated
argument for Mbed
in the above
function write().
Returns a byte,
which indicates the
status of the
transmission:
0: success
1:data too long to fit
in transmit buffer
2:received NACK on
transmit of address
3:received NACK on
transmit of data
4:other error

Serial.begin(speed) Speed (long): in
bits per second
(baud).

static
BufferedSerial
serial_port(USBT
X, USBRX,
baud);

tx: Transmit pin
rx: Receive pin
baud (int): The
baud rate of the
serial port (optional,
defaults to 9600.)

Serial.print() Numbers are printed
using an ASCII
character for each
digit. Floats are
similarly printed as
ASCII digits,
defaulting to two
decimal places.
Bytes are sent as a
single character.
Characters and
strings are sent as
is.

printf() Accepts any string to
be printed to the
serial port

Serial.println(); Numbers are printed printf(“……..\n”); Accepts any string to

 31

using an ASCII
character for each
digit. Floats are
similarly printed as
ASCII digits,
defaulting to two
decimal places.
Bytes are sent as a
single character.
Characters and
strings are sent as
is.

be printed to the
serial port and will
create a newline
afterwards as long as
it is finished with \n

Byte Byte is a pre-defined
type which has the
same functionality
as unsigned char in
C. For consistency
of Arduino
programming style,
the byte data type is
to be preferred.

unsigned char This is the default
data-type in C and
C++ for storing this
sort of variable

delay(ms); ms (unsigned
long): the number
of milliseconds to
pause

wait_ms(ms); ms (int): the whole
number of
milliseconds to wait.
However, in version
Mbed OS 6.2
wait_ms has been
deprecated, so one
may have to use
wait_us for
microseconds and
multiply all values by
1000. This was done
to create precise wait
capabilities.

randomSeed(seed); seed: number to
initialize the pseudo-
random sequence.
Allowed data types:
unsigned long

srand(); seed: An integer
value to be used as
seed by the pseudo-
random number
generator algorithm.

millis(); Returns the number
of milliseconds
passed since the
Arduino board
began running the
current program.
This number will
overflow (go back to
zero), after
approximately 50
days.

Timer timer;
timer.start();
millis =
timer.read_ms();

Returns the time
passed in
milliseconds.
However, in version
Mbed OS 6.2
read_ms has been
deprecated, so one
may have to use
read_us for
microseconds and
multiply all values by
1000

micros(); Returns the number
of microseconds

Timer timer;
timer.start();

Returns the time
passed in

https://arduino.cc/en/Reference/UnsignedChar
https://arduino.cc/en/Reference/UnsignedChar

 32

passed since the
Arduino board
began running the
current program.
This number will
overflow (go back to
zero), after
approximately 50
days.

millis =
timer.read_us();

microseconds.

Table 7 Similarities and differences of name counterpart parameters and functionality

7.1.4 Requirements fulfilled

Mandatory Requirements Fulfilled Reason if not fulfilled
Translate L36.h and L36.cpp from Arduino
for use on FRDM-K64F 
Translate LSM303.h and LSM303.cpp from
Arduino for use on FRDM-K64F 
Translate PololuBuzzer.h and
PololuBuzzer.cpp from Arduino for use on
FRDM-K64F



Translate Pushbutton.h and Pushbutton.cpp
from Arduino for use on FRDM-K64F 
Translate QTRSensors.h and
QTRSensors.cpp from Arduino for use on
FRDM-K64F



Translate ZumoMotors.h and
ZumoMotors.cpp from Arduino for use on
FRDM-K64F



Translate ZumoBuzzer.h from Arduino for
use on FRDM-K64F 
Translate ZumoReflectanceSensorArray.h
from Arduino for use on FRDM-K64F 
Translate ZumoShield.h from Arduino for
use on FRDM-K64F 
Translate example code BorderDetect from
Arduino for use on FRDM-K64F 
Translate example code Compass from
Arduino for use on FRDM-K64F 

Translate example code LineFollower from
Arduino for use on FRDM-K64F

Mostly The author did not succeed in
eradicating certain bugs. The
LineFollower example works for the
most part, although the Zumo shifts
marginally from side to side at a
rapid pace and sometimes falls off
the track especially at sharp turns.

Translate example code MazeSolver from
Arduino for use on FRDM-K64F

 The author failed at translating this
example code successfully as it
was heavily based on the
LineFollower example working
which is not the case

Translate example code
PushbuttonExample from Arduino for use
on FRDM-K64F



 33

Translate example code SensorCalibration
from Arduino for use on FRDM-K64F 
Translate example code
SumoCollisionDetect from Arduino for use
on FRDM-K64F



Translate example code
ZumoBuzzerExample,
ZumoBuzzerExample2 and
ZumoBuzzerExample3 from Arduino for use
on FRDM-K64F

Partially Only the ZumoBuzzerExample was
translated as the author thought
this was the prime example of the
buzzer functionality. Additionally,
much of the original Arduino code
was written in a bespoke manner,
creating a barrier while translating
certain functionality as it was tricky
to envision a matching Mbed
method. This is also why only one
example was successfully ported.

Translate example code
ZumoMotorExample from Arduino for use
on FRDM-K64F



Table 8 Mandatory requirements fulfilled

Optional Requirements Fulfilled Reason if not fulfilled
Translate example code QTRAExample,
QTRARawValuesExample,
QTRRCExample, and
QTRRCRawValuesExample from Arduino
for use on FRDM-K64F

 These examples are designed for
use with six QTR-1A sensors or the
first six sensors of a QTR-8A
module. This project only used the
Zumo Reflectance Sensor Array.

Creating original examples that only support
FRDM-K64F specific functionality e.g. RGB
LED, SD Cards, Bluetooth, WiFi, and other
FRDM-K64F pin signals



Example code was created to
support the functionality of the
RGB LED and SD Card reader, but
not of the Bluetooth and WiFi. The
required sensor modules would be
the JY-MCU BT board V1.05 BT for
Bluetooth, and the ESP8266
module for WiFi.

Translate example code RCControl from
Arduino for use on FRDM-K64F while
connecting an RC servo receiver to Arduino
UNO R3 and FRDM-K64F

 By connecting an RC receiver and
running this example sketch, the
Zumo can be turned into a radio-
controlled vehicle. The author did
not have a receiver nor a soldering
kit available to achieve this.

Table 9 Optional requirements fulfilled

 34

7.2 Software Porting Investigation

7.2.1 Programming Environments

Over the course of the software porting process, it became evident that the compile

time of Mbed Studio in contrast to the Arduino IDE was significantly prolonged. This is most
likely due to the greatly increased volume of files required each time a new program is
formed and compiled in Mbed Studio, as the entire Mbed OS is downloaded again upon its
creation. For instance, the ZumoMotorExample in Mbed takes up 231,687 files, producing
complications in memory space owing to it occupying 1GB of disk space. This has been
rectified in the latest 1.2 release however the author coded this when only the Mbed Studio
1.1 or below releases were available.

It was also observed that Mbed Studio did not invariably detect potential errors via its
linting tool, such as occasionally neglecting to flag missing imports for class instantiations.
On the other hand, Arduino IDE does not appear to have any sort of linting tool which is
detrimental to both newcomers and professionals as it increases debugging time. This is a
setback for newcomers in particular as a linting tool would point out obvious or common
syntax problems, for example if (val = 0) that often replaces the forgotten ==. Another factor
that increased debugging time in Arduino in contrast to Mbed was the lack of a debugger, as
pointed out in the background research in Section 3.1.2. The author ended up debugging
primarily using printf() statements [35], equivalent to Serial.print() in Arduino. A serial monitor
is available on both IDEs, simplifying the way in which the programmer can observe the data
and behaviour of the microcontroller board. The problem with the Arduino Serial.print() is
that, due to the fact that only .ino files and sketches can be opened in the IDE, one cannot
print statements to analyse values in any other library file (.cpp or .h). At the same time, the
Serial connection significantly slowed the operation of the Mbed board compared to the
Arduino. This was slowed but not to the same degree, in some cases a change being
entirely unnoticeable. Unexpected delay or interruption of the processing of code on a board
can cause severe disruption in the desired performance and output of the device, especially
if a timer is involved.

A frequent bug that emerged with the Mbed Studio IDE was that it occasionally
detected non-existent errors. Sometimes, the IDE would state compile errors that had been
cleared, as it would be compiling an older version of what had been typed earlier. This would
in most cases return to normality by way of merely restarting the IDE or your computer.
Right-clicking a program and selecting “Duplicate” does not duplicate the program
effectively, giving an error stating “no linker script found”. The only effective method of
duplicating a program is to create a new one and then either drag and drop the files in on the
IDE or through your PC’s File Explorer. These bugs come as no surprise given how recently
this IDE was formally released for the first time.

The mandatory int main() function in Mbed lacking in the Arduino library and IDE at
times muddled the author as this would be the final aspect for appending that would be
overlooked as it is not once defined in the Arduino library. This is due to the fact that Arduino
does not require a main function to be stated, the equivalent being setup() and loop() called
from the compiler in that order, as mentioned above.

A frustrating element of the latest Mbed OS 6.2 is that the wait_ms and
timer.read_ms are deprecated as Mbed tries to discourage you from making long delays.
This makes porting from a piece of Arduino code with frequently appearing millis() is difficult
as all the timings must be multiplied by 1000, however to ensure one does this consistently
is problematic.

For the duration of this project, it was noticed that the Mbed OS updated far more
frequently than Arduino. This meant a lot of code completed by the author on Mbed a few
months prior caused errors due to features being deprecated, unlike on Arduino for which
the ZumoShield library was completed in early 2018 and still works well across the platform.
These errors included the Serial API being replaced by BufferedSerial and the printf() for

 35

floats being discontinued to reduce memory usage when the OS updated from 5.0 to 6.0.
This forced “minimal-printf” was dealt with by adding an mbed_app.json file to the program to
enable floats being accepted again. This was also unhelpful as it made a lot of example
code submitted by Mbed users a few years ago harder to use as guidance as it was now
quite inconsistent with the current OS. This is another indicator that the Arduino platform is
far more established. For this reason, one must be prepared and mindful of the fact that the
Mbed OS is more likely to update when porting from Mbed to Arduino, and extra work will
have to be undertaken to get around this.

7.2.2 Code translation observations

 A characteristic of the Arduino ZumoShield library that ultimately proved to be an
asset in code translation was the information in the #if, #else, #endif and #ifdef directives.
This library could instead have been coded entirely in a bespoke manner, solely designed for
certain selected Arduino boards with specific board requirements and capabilities. Instead,
the ZumoMotors.cpp file provided optional code for alternatives as seen in Figure 13 below,
giving the author an idea of the figures and functions needed to perform this desired
behaviour.

#if defined(__AVR_ATmega168__) || defined(__AVR_ATmega328P__) || defined
(__AVR_ATmega32U4__)
 #define USE_20KHZ_PWM
#endif

…

#ifdef USE_20KHZ_PWM
 OCR1B = speed;
#else
 analogWrite(PWM_L, speed * 51 / 80); // default to using analogWrite, mapping 400 to
255
#endif

Figure 13 Code snippet from Arduino ZumoShield library file ZumoMotors.cpp

OCR1B in the above figure refers to an Arduino MCU specific timer that, as one can

see, is interacted with in quite a unique way by comparison with analogWrite. As presented
in Table 6, analogWrite can be replaced with PwmOut in Mbed; in this way the Mbed
equivalent ZumoMotors.cpp file was developed. In the absence of the information provided
for the #else directive, the author would have found it rather complex deciphering the parallel
Mbed code that would result in the same performance if this file was more tailor-made.
Unfortunately, this was the case for certain customised features that revolve around Arduino-
specific parameters, impeding the porting process in other regions of the library. This
included the PololuBuzzer files, a snippet displayed below in Figure 14. Once again, the
code references timers that are unique to Arduino microcontrollers, yet this time no
alternative functionality is immediately obvious to hint toward the manner in which it might be
achievable to replicate this behaviour in Mbed. This answers why the author only achieved
the conversion of the ZumoBuzzerExample while not including ZumoBuzzerExample2 and
ZumoBuzzerExample3. Nonetheless, the author believed this to be reasonable in providing
a replication and illustration of this buzzer functionality.

 36

#ifdef __AVR_ATmega32U4__

// Timer4 overflow interrupt
ISR (TIMER4_OVF_vect)
{
 if (buzzerTimeout-- == 0)
 {
 DISABLE_TIMER_INTERRUPT();
 sei(); // re-enable global interrupts (nextNote()
is very slow)
 TCCR4B = (TCCR4B & 0xF0) | TIMER4_CLK_8; // select IO clock
 unsigned int top = (F_CPU/16) / 1000; // set TOP for freq = 1 kHz:
 TC4H = top >> 8; // top 2 bits... (TC4H temporarily stores
top 2 bits of 10-bit accesses)
 OCR4C = top; // and bottom 8 bits
 TC4H = 0; // 0% duty cycle: top 2 bits...
 OCR4D = 0; // and bottom 8 bits
 buzzerFinished = 1;
 if (buzzerSequence && (play_mode_setting == PLAY_AUTOMATIC))
 nextNote();
 }
}

#else // 168P or 328P

// Timer2 overflow interrupt
ISR (TIMER2_OVF_vect)
{
 if (buzzerTimeout-- == 0)
 {
 DISABLE_TIMER_INTERRUPT();
 sei(); // re-enable global interrupts (nextNote()
is very slow)
 TCCR2B = (TCCR2B & 0xF8) | TIMER2_CLK_32; // select IO clock
 OCR2A = (F_CPU/64) / 1000; // set TOP for freq = 1 kHz
 OCR2B = 0; // 0% duty cycle
 buzzerFinished = 1;
 if (buzzerSequence && (play_mode_setting == PLAY_AUTOMATIC))
 nextNote();
 }
}

#endif

Figure 14 Code snippet from Arduino ZumoShield library file PololuBuzzer.cpp

The author removed the code within the directives provided for the ATmega32U4, as

this applies to the Zumo 32U4 robot instead of the ZumoShield robot used in this project.
The author ran into a number of obstacles while converting the ZumoMotorExample,

as it was one of the initial example codes converted hence the author was not as familiar
with the process at this stage. Following subsequent failed attempts with seemingly no
forum-based knowledge on this conversion, the author did some further research to discover
the motor driver on Zumo Shield named DRV8835. It was then apparent that the
ZumoMotors.h and ZumoMotors.cpp files were based on the Arduino library for the Pololu
DRV8835 Dual Motor Driver Shield [36]. Thereafter, the author fell upon a user-submitted
example conversion of this library on the Mbed forum [37], applying it to produce the Mbed
adaptation of the ZumoMotor files instead. This operated more effectively than former
efforts, perhaps due to the insight of an Mbed programmer with high-level expertise. Another
set of files for which their development was aided by the high-level expertise of an Mbed

 37

forum member were QTRSensors.h and QTRSensors.cpp. A well-constructed set of
translated files were provided by this member [38], nevertheless they state within the
comments that they are unsure on what direction to take for some sections of the code as
they do not have a test sensor on them. This indicates that the code was not at all tested but
was built on the basis of the user’s extensive knowledge in the field, as a proposed solution
to the translation of these files. The author thereby utilised elements of this proposed
solution, refining it during and after ample testing with the Zumo Reflectance Sensor Array
attached to the robot.

Another important factor to remember was that, due to custom functions on Arduino
often expecting a parameter between the range of 0 to 255, this value would often be
passed around as a variable stored as an integer. In Mbed this range is always mapped to
the range of 0 to 1, so the decimal point values between these two values are highly
important to represent the variance and therefore should be passed around in a variable
stored as a float.

Arduino uses a few Arduino-specific names for elements of the C++ language that
already have their own name. This includes unsigned char being named Byte and srand()
being named randomSeed(), despite having an identical functionality. The theory is that,
despite not being particularly necessary, a newer programmer will find these names easier
to understand and write simply. Arduino explains, “For consistency of Arduino programming
style, the byte data type is to be preferred [39].”

Regardless of whether converted class code appeared to work effectively for one
example code, this did not guarantee that it would operate as successfully for another
example code if the first was not producing the precise values that the Arduino compiler
would have been expecting. In other words, an inaccuracy that one could get away with for a
single example could carry over and cause a larger error in a future piece of code that could
not be circumvented. As mentioned in Section 7.1.2, the author was oftentimes unclear
when it was appropriate to dedicate time to making the functionality identical, as it was either
a necessity or unnecessary.

The author predicts that the bug in the LineFollower function is based on a slightly
inaccurate sensor reading, an inaccuracy that has no impact on the performance of the
BorderDetect example but has an error that presents itself later in LineFollower. This was
confirmed when the author read the sensor readings on the Arduino Uno R3, exchanged the
board to the FRDM-K64F while ensuring the Zumo robot stayed in the exact same position,
and read the new sensor readings. They were off in a sporadic manner, as the error would
change at each of these tests. The author could not distinguish what was causing this slight
error, hypothesising that the Mbed timer generates different results to the Arduino millis()
function; changing the sensor readings. Although the LineFollower example works for
periods of time, the impact of this error was that the robot would sometimes fall off the track,
especially at sharp turns.

7.2.3 Hardware

It is advisable to be aware of the level of charge remaining inside of the Zumo Robot.

The author experienced a period where they could not determine where in the code the
haphazard behaviour of the robot was coming from, particularly in regards to its line
following ability, only to realise that this was a result of a low battery level. While operating
the Zumo robot, the Arduino Uno R3 was provided a sufficient power supply solely from the
batteries inside the robot, powering the board and the robot movement. The FRDM-K64F
appears to require a greater supply of power, as when it is relying on the power from the
internal batteries alone, the robot can barely move in the expected manner. It turns out that
the performance goes back to its expected behaviour when the FRDM-K64F is connected to
the PC using a 5V micro USB wire. The limitation of a wire being connected to the PC during
testing, holding the robot back, was entirely impractical especially given the purpose of the
robot being mostly based around movement. The wire would often get tangled and twisted

https://www.arduino.cc/reference/en/language/variables/data-types/byte

 38

within itself during testing with the LineFollower example that is following a cyclical path. To
circumvent this troublesome issue, a small portable power pack was connected to the
FRDM-K64F and held on board using a rubber band.

Similarly, the implementation of the SD Card functionality was useful in avoiding this
repeated issue with the connected wire as well. The completion of this code fulfilled a
secondary, optional task exposing the FRDM-K64F’s extra abilities in contrast to the Arduino
Uno R3. This functionality is present in the sdCard, SumoCollisionDetect and compass
examples, with optional implementation depending on whether a directive is present or not.
These examples made use of the FRDM-K64F’s RGB LED and SD Card capabilities. The
green LED indicates the program has started running, red to represent the SD Card being
mounted, blue to indicate the SD Card was written to, and red again to indicate the file was
closed and card unmounted. During Serial communication, both the Arduino Uno R3 and
FRDM-K64F must be connected to the PC to send data via the USB Type-B and micro USB
wires respectively. A key advantage of writing to an SD Card is that collecting data would not
have to be achieved through a movement-hindering wire. The Arduino Uno R3 would benefit
from this as well, as the author’s USB Type-B wire is very short and stiff so the laptop it
connected to had to be carried around with the robot when testing its movement.

Presently, the bootloader of the FRDM-K64F often gets corrupted when plugged into
a Windows 10 machine. The author found the quickest solution to be to redownload the
firmware [40], currently with the name k20dx_frdmk64f_if_crc_legacy_0x5000.bin, to your
PC and reupload it to the FRDM-K64F in order to update the firmware. This is a known issue
that has been around since at least 2016 or more. This is another instance where Arduino
presents itself to be a more solid or reliable platform, as pointed out by the author of the s-
lab article [9].

As warned by Styger, the sensor readings can be temperamental depending on the
material the line it is expected to detect is made from [29]. On first attempt at building the line
following track, the material used was simply marker pen ink against white card. Similar to
the issue with ink Styger had encountered due to his line being made by a laser printer, both
were solved by replacing these lines with black tape which worked as expected.

For evaluating the microcontroller board performance comparison, the
SumoCollisionDetect and compass examples were coded on Mbed utilising the on board 6-
axis combo Sensor Accelerometer and Magnetometer on the FRDM-K64F instead of those
on the Zumo robot. For this to work, the PTE25 and PTE24 pins need to be bent away when
attaching the board to the Zumo robot as they cause interference.

The Arduino Uno R3 did prove that it was adversely affected by having half the flash
memory of the FRDM-K64F, as it was unable to store multiple calculation values that were
required for testing.

All of these discoveries and challenges affected how the system was built.

 39

8. Experiments

8.1 Experiment 1 – PushButton

 The PushButton example on the FRDM-K64F was tested by observing whether the
LED light turned on as expected after pressing the pushbutton on the robot. The original and
translated example provide 3 techniques for implementing this within the code, so all except
the one being tested had to be commented out. This experiment and all 3 methods were
successful.

8.2 Experiment 2 – ZumoBuzzer

 The ZumoBuzzer example experiment involved simply observing the melody
produced by the robot with the FRDM-K64F and comparing it to the one produced on the
original Arduino Uno R3. The melody produced was identical and thus this experiment was
successful.

8.3 Experiment 3 – ZumoMotor

 The ZumoMotor example experiment involved observing whether the robot’s
movement with the FRDM-K64F mirrored that of the robot with the Arduino Uno R3. During
development, the author had noticed that robot was not slowing and speeding up or having
any variety in speed for this example. This was fixed and after finishing development, the
robot movement was identical to the original and thus this experiment was successful.

8.4 Experiment 4 – Border Detect

The BorderDetect example was tested against a black granite surface, the robot
encircled by a white line made of masking tape, as depicted in . To ensure the code was
effective, it was observed whether or not the robot with the FRDM-K64F stopped precisely at
the border representing the line. During code development the robot was passing this line
and stopping slightly after it, but after correcting the code communicating with the sensors
the robot stopped exactly at the line just as it did with the Arduino board. This experiment
was completed successfully after numerous repeated tests, confirming that the code
translation for this example was successful.

Figure 15 Robot battle arena

 40

8.5 Experiment 5 – Line Follower

The Line Follower experiment observed how effectively the robot followed the path
presented in Figure 16. In this experiment robot mostly followed the line, although shifting
marginally from side to side at a rapid pace and sometimes falling off the track especially at
sharp turns.

Figure 16 Line Follower path

8.6 Experiment 6 – Sumo Collision Detect

The SumoCollisionDetect example was tested in the same arena as that used when
testing the BorderDetect example. Unlike Experiment 1, evaluating the success of this
translated example code would not be feasible or reliable without a second robot. The author
bought another Zumo robot, one using the original library’s SumoCollisionDetect example
code on the Arduino Uno R3, the other using the translated example code on the FRDM-
K64F. This experiment would enable a battle between the two robots, the loser being the
one to fall past the white line. Not only would this experiment compare the general board
performance, the FRDM-K64F utilises its on-board Accelerometer and Magnetometer
instead of those on the Zumo robot and this would be compared as well. To ensure reliability
of results, the robots were both placed in the same position in the battlefield at the start of
each experiment as shown in Figure 15. The batteries used were also new and fully charged
to minimise any outward factors that could impact the results. 35 tests were executed, 5
were won by the robot with the Arduino Uno R3 board and 30 with the FRDM-K64F board.
The robot with the FRDM-K64F board had a success rate of 86%.

 41

8.7 Experiment 7 – Compass

 The Compass example experiment observed how effectively the robot coordinated
90 degree turns in squares. A line was drawn with a ruler to keep track of the robot’s
direction and turn, and a compass used to measure this angle. The angle measured was
92°, although the tracking of the line was slightly tedious due to the robot moving quickly so
the result may have been even more accurate.

8.8 Timing Experiments

 The compile time on either IDE for an empty test program was measured, the
Arduino taking exactly 5 seconds in contrast to the Mbed board taking 9 minutes and 45
seconds. As mentioned above, this is likely due to the necessity of having a copy the OS
redownloaded and recompiled for every new program. This compile time has been reduced
to 15 seconds in the latest version however it was released immediately after the author
finished programming this project.
 The time complexity of both libraries is roughly quite similar due to the close mirroring
of code structure between the two. Unfortunately this was difficult to test exactly as a lot of
the pre-defined code is hidden behind the compiler, so it is impossible to count this
complexity in its entirety without full access to all the code utilised in both projects.
 The response time of the robot was tested by setting a timer before and after turning
the LED on. The results showed that the FRDM-K64F took 5 microseconds to execute this
command and the Arduino Uno R3 took 8.

 42

9. System Evaluation

The results from the experiments in the previous section indicate that this system
was correctly translated and implemented, and give some idea of where the differences in
the boards lie. On the most part, most experiments conducted due to the scope of the library
were limiting in that they could only really prove that the boards performed equally to each
other. The key instances where there was a difference in performance was with the
LineFollower and SumoCollisionDetect examples, the first would indicate the FRDM-K64F
board performed worse at this task and the latter better. However, the problem with the
LineFollower’s performance was most likely not the fault of or a representation of the board
but the program translation. The SumoCollisionDetect is the only experiment that provides
substantial evidence that the FRDM-K64F can provide a superior performance. This
experiment’s success may indicate that the Accelerometer and Magnetometer on the FRDM-
K64F are advanced to those on the Zumo robot, giving it an advantage by detecting a
collision earlier. It may also be due to the robot’s higher clock speed, flash memory and RAM
(Table 2), or that the robot receives more power to push the Arduino robot away due to the
additional energy supplied via the portable charger. The superior results of the FRDM-K64F
may be due to all or a few of these reasons.

 43

10. Conclusion

 This assessment was successful in terms of achievement of code and as an
investigation as a whole. Unfortunately not all code translation objectives were completed,
namely the LineFollower and MazeSolver examples. Perhaps with further time the author
could have fixed the issues that they could not solve in the given time period.

To enhance the investigation aspect of this report, as a potential extension of this
project the author could have developed examples for the two boards that were able to show
more clearly a comparison in their performance. This could be achieved by researching
online user-defined Arduino examples that do not exist in the ZumoShield library for
additional functionality of the Zumo robot or by creating original programs. With a greater
time constraint, the author could have investigated the additional 32 inner pins on the
FRDM-K64F and tested what other signals and capabilities these pins uniquely provide to
the Zumo robot. Another future project could be connecting an RC servo and receiver to
both boards and turning the Zumo into a radio-controlled vehicle, again comparing the
performance. An improved version of the maze solver could also be implemented, as Styger
suggested, creating the ability for the robot to return from the finish to the start automatically,
or exploring the full maze to find the smallest path [29].

The extension would also explore additional sensors that can be purchased for the
Zumo robot, such as lidar or sonar range finders, and sharp distance sensors [41] for
detecting nearby objects. To implement this, it is necessary to purchase, “Connector and
jumper wires, for connecting additional sensors and components” [31]. Other sensor
modules that can be attached to the boards include a temperature & humidity sensor [3],
vibration, joystick, and digit display [3]. As much as this project made plenty of useful
discoveries, there is vast scope for improvement.

One can conclude from this investigation that Mbed’s FRDM-K64F board potentially
has more powerful capabilities, however, if one wants to utilise these they must prepare for a
platform that is not as refined as Arduino’s. Mbed does seem quick to produce
improvements, proven by the number of updates that were released over the duration of this
project, so one can assume that the Mbed platform will become more solid in the near future.
Despite there not being a vast number of resources for porting from Arduino to Mbed online,
it is achievable with extensive research and time.

 44

References

[1] Hackster, “Arduino IoT Cloud Amazon Alexa Integration,” 2019. [Online]. Available:
https://www.hackster.io/303628/arduino-iot-cloud-amazon-alexa-integration-4e6078.
[Accessed 21 November 2019].

[2] Arduino, “Arduino Uno Rev3,” [Online]. Available: https://store.arduino.cc/arduino-uno-
rev3. [Accessed 19 November 2019].

[3] Arm Mbed, “FRDM-K64F,” [Online]. Available: https://os.mbed.com/platforms/FRDM-
K64F/. [Accessed 19 November 2019].

[4] Pololu Corporation, “Pololu Zumo Shield Arduino Library,” 2018. [Online]. Available:
https://pololu.github.io/zumo-shield-arduino-library/. [Accessed 19 November 2019].

[5] Arduino, “Language Reference,” [Online]. Available:
https://www.arduino.cc/reference/en/. [Accessed 15 August 2020].

[6] Mbed, “Full API list,” [Online]. Available: https://os.mbed.com/docs/mbed-
os/v6.2/apis/index.html. [Accessed 15 08 2020].

[7] B. Huang and R. Derek, The Arduino inventor's guide: learn electronics by making 10
awesome projects, San Francisco: Sparkfun Electronics, 2017, p. 72.

[8] J. N. Rejeev Grover, “Method of Porting Software”. USA Patent US 7,185,344 B2, 2007.

[9] s-lab, “Mbed VS Arduino,” 2013. [Online]. Available:
http://slab.concordia.ca/2013/mbed/mbed-comparison-test/. [Accessed 2019 November
18].

[10] s-lab, “Mbed Overview,” 2013. [Online]. Available:
http://slab.concordia.ca/2013/mbed/mbed-overview/. [Accessed 18 November 2019].

[11] J. Carver, “K64F eCompass,” 2014. [Online]. Available:
https://os.mbed.com/users/JimCarver/code/K64F_eCompass/. [Accessed 19 November
2019].

[12] Mbed, “Handbook - Homepage,” [Online]. Available:
https://os.mbed.com/handbook/Homepage. [Accessed 18 November 2019].

[13] Mbed, “Cookbook - Homepage,” [Online]. Available:
https://os.mbed.com/cookbook/Homepage. [Accessed 18 November 2019].

[14] J. Yiu, “Technical Article - Basics of porting C-code to and between ARM CPUs: From 8-
/16-Bit MCUs to Cortex-M0,” 2011. [Online]. Available:
https://www.embedded.com/basics-of-porting-c-code-to-and-between-arm-cpus-from-8-
16-bit-mcus-to-cortex-m0/. [Accessed 19 November 2019].

[15] Arduino, “Software,” [Online]. Available: https://www.arduino.cc/en/main/software.
[Accessed 17 November 2019].

[16] Arduino, “Getting Started with Arduino UNO,” 2019. [Online]. Available:
https://www.arduino.cc/en/Guide/ArduinoUno. [Accessed 17 November 2019].

[17] Arduino, “Environment,” 2015. [Online]. Available:
https://www.arduino.cc/en/Guide/Environment. [Accessed 17 October 2019].

[18] Mbed, “TCP IP protocols and APIs,” 21 November 2019. [Online]. Available:
https://os.mbed.com/handbook/TCP-IP-protocols-and-APIs.

[19] Mbed, “The Mbed implementation of PSA,” [Online]. Available:
https://os.mbed.com/docs/mbed-os/v6.0/apis/security-concepts.html. [Accessed 15
August 2020].

[20] B. Lim, “Moving from Arduino to Arm,” 2018. [Online]. Available:
http://westsideelectronics.com/moving-from-arduino-to-arm/. [Accessed 17 November
2019].

[21] E. Styger, “The Freedom Zumo Robot,” 2013. [Online]. Available:

 45

https://mcuoneclipse.com/2013/01/31/the-freedom-zumo-robot/. [Accessed 19
November 2019].

[22] NXP, “PROCESSOR-EXPERT: Processor Expert software - Integration with
CodeWarrior tool,” [Online]. Available:
https://www.nxp.com/design/software/development-software/processor-expert-
software/processor-expert-software-integration-with-codewarrior-tool:PROCESSOR-
EXPERT. [Accessed 19 November 2019].

[23] NXP, “Get Started with the FRDM-K64F,” [Online]. Available:
https://www.nxp.com/document/guide/get-started-with-the-frdm-k64f:NGS-FRDM-K64F.
[Accessed 19 November 2019].

[24] NXP, “FRDM-K64F: Freedom Development Platform for Kinetis® K64, K63, and K24
MCUs,” [Online]. Available: https://www.nxp.com/design/development-boards/freedom-
development-boards/mcu-boards/freedom-development-platform-for-kinetis-k64-k63-
and-k24-mcus:FRDM-K64F. [Accessed 19 November 2019].

[25] Components101, “Arduino Uno,” [Online]. Available: Arduino Uno. [Accessed 15 August
2020].

[26] Arduino, “ATmega168/328P-Arduino Pin Mapping,” [Online]. Available:
https://www.arduino.cc/en/Hacking/PinMapping168. [Accessed 18 November 2019].

[27] Atmel, “ATmega328P Datasheet,” 2015. [Online]. Available:
http://ww1.microchip.com/downloads/en/DeviceDoc/Atmel-7810-Automotive-
Microcontrollers-ATmega328P_Datasheet.pdf. [Accessed 18 November 2019].

[28] NXP, “Kinetis K64F Sub-Family Data Sheet, Rev. 7,” 2016. [Online]. Available:
https://www.nxp.com/docs/en/data-sheet/K64P144M120SF5.pdf. [Accessed 18
November 2019].

[29] E. Styger, “Freedom Robot solves the Maze,” 2013. [Online]. Available:
https://mcuoneclipse.com/2013/03/20/freedom-robot-solves-the-maze/. [Accessed 19
November 2019].

[30] L. Levin, “Getting Started with NXP FRDM-K64F and the Mbed Environment,” 2016.
[Online]. Available: https://www.hackster.io/leroy2le/getting-started-with-nxp-frdm-k64f-
and-the-mbed-environment-139d8d. [Accessed 19 November 2019].

[31] Pololu Corporation, “Pololu Zumo Shield for Arduino User’s Guide,” 2001-2019. [Online].
Available: https://www.pololu.com/docs/0J57/all. [Accessed 19 November 2019].

[32] E. Styger, “Zumo Line Following with FRDM-KL25Z,” 2013. [Online]. Available:
https://mcuoneclipse.com/2013/02/08/zumo-line-following-with-frdm-kl25z/. [Accessed
19 November 2019].

[33] Mbed, “FRDM-K64F rev3 pinout/pin-multiplexing,” [Online]. Available:
https://os.mbed.com/media/uploads/GregC/frdm-k64f_pinout_reve3.xls. [Accessed 17
August 2020].

[34] Arduino, “millis(),” [Online]. Available:
https://www.arduino.cc/reference/en/language/functions/time/millis/. [Accessed 21
August 2020].

[35] Mbed, “Debugging using printf() statements,” [Online]. Available:
https://os.mbed.com/docs/mbed-os/v6.2/debug-test/debugging-using-printf-
statements.html. [Accessed 21 August 2020].

[36] Pololu, “Arduino library for the Pololu DRV8835 Dual Motor Driver Shield,” 30 March
2018. [Online]. Available: https://github.com/pololu/drv8835-motor-shield. [Accessed 21
August 2020].

[37] E. Coyle, “DRV8835,” 25 August 2015. [Online]. Available:
https://os.mbed.com/users/DrCoyle/code/DRV8835/. [Accessed 21 August 2020].

[38] M. Phillipps, “PololuQTRSensors,” 27 August 2015. [Online]. Available:

 46

https://os.mbed.com/users/phillippsm/code/PololuQTRSensors/. [Accessed 21 August
2020].

[39] Arduino, “unsigned char,” [Online]. Available:
https://www.arduino.cc/reference/en/language/variables/data-types/unsignedchar/.
[Accessed 21 August 2020].

[40] NXP, “OPENSDA: OpenSDA Serial and Debug Adapter,” [Online]. Available:
https://www.nxp.com/design/microcontrollers-developer-resources/ides-for-kinetis-
mcus/opensda-serial-and-debug-adapter:OPENSDA?&tid=vanOpenSDA#FRDM-K64F.
[Accessed 21 August 2020].

[41] Pololu, “Proximity Sensors and Range Finders,” [Online]. Available:
https://www.pololu.com/category/189/proximity-sensors-and-range-finders. [Accessed
19 November 2019].

[42] Pololu, “Maze Solver,” [Online]. Available: https://www.pololu.com/docs/0J57/all#7.e.
[Accessed 19 November 2019].

 47

Appendix

Interim Log

Date Meeting Contents

7/10/19 Overview of deadlines, useful resources, useful beginner practise
tasks to familiarise oneself with ZUMO, relevant suggestions, Trello
platform

13/11/19 Reminder of essential requirements for Interim report, signing the
ethical compliance form

03/07/20 Suggestions for structure and detail to add for first draft to send of the
report

