
Serial communications
with I2C

1

DRAFT VERSION - This is part of a course slide set,
currently under development at:
http://mbed.org/cookbook/Course-Notes

We welcome your feedback in the comments section of the course notes
cookbook page. Tell us if these slides are useful, if you would use them to

help run lessons, workshops or training, and how you’d improve them.

Written by R. Toulson (Anglia Ruskin University) and
T. Wilmshurst (University of Derby), (c) ARM 2011

An accompanying textbook is also being considered if there is interest

http://mbed.org/cookbook/Course-Notes
http://mbed.org/cookbook/Course-Notes
http://mbed.org/cookbook/Course-Notes

Serial communications with I2C

• Introducing I2C

• Evaluating simple I2C communications

• I2C on the mbed

• Working with the TMP102 I2C temperature sensor

• Working with the SRF08 ultrasonic rangefinder

• Interfacing multiple devices on a single I2C bus

• Extended exercises

2

Introducing I2C

• The name I2C is shorthand for Standard Inter-Integrated
Circuit bus

• I2C is a serial data protocol which operates with a
master/slave relationship

• I2C only uses two physical wires, this means that data only
travels in one direction at a time.

3

Introducing I2C

• The I2C protocol is a two-wire serial bus:

• The I2C communication signals are serial data (SDA) and serial clock (SCL)

– These two signals make it possible to support serial communication of
8-bit data bytes, 7-bit device addresses as well as control bits

– Using just two wires makes it cheap and simple to implement in
hardware

4

Evaluating simple I2C communications

• I2C has a built-in addressing scheme, which simplifies the task of
linking multiple devices together.

– In general, the device that initiates communication is termed the ‘master’. A
device being addressed by the master is called a ‘slave’.

– Each I2C-compatible slave device has a predefined device address. The slaves
are therefore responsible for monitoring the bus and responding only to data
and commands associate with their own address.

– This addressing method, however, limits the number of identical slave devices
that can exist on a single I2C bus, as each device must have a unique address.
For some devices, only a few of the address bits are user configurable.

5

Evaluating simple I2C communications

• A data transfer is made up of the Master
signalling a Start Condition, followed by
one or two bytes containing address and
control information.

• The Start condition is defined by a high
to low transition of SDA when SCL is
high.

• A low to high transition of SDA while SCL
is high defines a Stop condition

• One SCL clock pulse is generated for
each SDA data bit, and data may only

change when the clock is low.

6

Evaluating simple I2C communications

7

• The byte following the Start condition is made up of seven address bits, and one
data direction bit (Read/Write)

• All data transferred is in units of one byte, with no limit on the number of bytes
transferred in one message.

• Each byte must be followed by a 1-bit acknowledge from the receiver, during
which time the transmitter relinquishes SDA control.

I2C on the mbed

8

The mbed I2C library functions are shown in the table below:

I2C An I2C Master, used for communicating with I2C slave devices

Functions Usage

I2C Create an I2C Master interface, connected to the specified pins

frequency Set the frequency of the I2C interface

read Read from an I2C slave

read Read a single byte from the I2C bus

write Write to an I2C slave

write Write single byte out on the I2CC bus

start Creates a start condition on the I2C bus

stop Creates a stop condition on the I2C bus

• The I2C Interface can be used on
mbed pins p9/p10 and p28/p27

• Note also that the SDA and SCL
data signals each need to be
‘pulled up’ to 3.3V through a 2.2
kΩ resistor

I2C on the mbed

9

Evaluating the TMP102 I2C temperature sensor

• Configuration and data register details are given in the TMP102 data sheet

http://focus.ti.com/lit/ds/sbos397b/sbos397b.pdf

• To configure the temperature sensor we need to:

– Use arrays of 8-bit values for the data variables, because the I2C bus can only
communicate data in one bytes.

– Set the configuration register; we first need to send a data byte of 0x01 to specify that
the Pointer Register is set to ‘Configuration Register’.

– Send two bytes of data to perform the configuration. A simple configuration value to
initialise the TMP102 to normal mode operation is 0x60A0.

• To read the data register we need to:

– To read the data register we need to set the pointer value to 0x00.

– To print the data we need to convert the data from a 16-bit data reading to an actual
temperature value. The conversion required is to shift the data right by 4 bits (its
actually only 12-bit data held in two 8-bit registers) and to multiply by the 1-bit
resolution which is 0.0625 degrees C per LSB.

10

http://focus.ti.com/lit/ds/sbos397b/sbos397b.pdf

Interfacing the TMP102 with the mbed

• The TMP102 can be connected to the mbed as shown:

11

Signal
TMP102

Pin

Mbed

Pin
Notes

Vcc (3.3V) 1 40

Gnd (0V) 4 1

SDA 2 9 2.2kΩ pull-up to 3.3V

SCL 3 10 2.2kΩ pull-up to 3.3V

Working with the TMP102 I2C
temperature sensor

• Exercise 1: Connect the temperature sensor to an I2C bus. Verify
that the correct data can be read by continuously display updates of
temperature to the screen.

– Test that the temperature increases when you press your finger
against the sensor. You can even try placing the sensor on something
warm, for example a pocket hand warmer, in order to check that it
reads temperature correctly.

12

Working with the TMP102 I2C
temperature sensor

13

#include "mbed.h“

I2C tempsensor(p9, p10); //sda, sc1

Serial pc(USBTX, USBRX); //tx, rx

const int addr = 0x90;

char config_t[3];

char temp_read[2];

float temp;

int main() {

 config_t[0] = 0x01; //set pointer reg to 'config register'

 config_t[1] = 0x60; // config data byte1

 config_t[2] = 0xA0; // config data byte2

 tempsensor.write(addr, config_t, 3);

 config_t[0] = 0x00; //set pointer reg to 'data register'

 tempsensor.write(addr, config_t, 1); //send to pointer 'read temp'

 while(1) {

 wait(1);

 tempsensor.read(addr, temp_read, 2); //read the two-byte temp data

 temp = 0.0625 * (((temp_read[0] << 8) + temp_read[1]) >> 4); //convert data

 pc.printf("Temp = %.2f degC\n\r", temp);

 }

}

 The following program will configure the TMP102 sensor, read data, convert data
to degrees Celsius and then display values to the screen every second:

Evaluating the SRF08 ultrasonic rangefinder

• Configuration and data register details are given in the SRF08 data sheet:

http://www.rapidonline.com/netalogue/specs/78-1086.pdf

• The following information summarises the configuration and data read
procedures for the SRF08:

– The rangefinder I2C address is 0xE0.

– The pointer value for the command register is 0x00.

– A data value of 0x51 to the command register initialises the range finder to operate and
return data in cm.

– A pointer value of 0x02 prepares for 16-bit data (i.e. two bytes) to be read.

14

http://www.rapidonline.com/netalogue/specs/78-1086.pdf
http://www.rapidonline.com/netalogue/specs/78-1086.pdf
http://www.rapidonline.com/netalogue/specs/78-1086.pdf

Interfacing the SRF08 with the mbed

• The SRF08 ultrasonic range finder is an I2C device which
measures distance and proximity of items

• The SRF08 can be connected to the mbed as shown:

15

Working with the SRF08 ultrasonic
rangefinder

• Exercise 2: Configure the SRF08 ultrasonic rangefinder to update distance
data to the screen. The following code will perform this operation:

16

#include "mbed.h"

I2C rangefinder(p9, p10); //sda, sc1

Serial pc(USBTX, USBRX); //tx, rx

const int addr = 0xE0;

char config_r[2];

char range_read[2];

float range;

int main() {

 while (1) {

 config_r[0] = 0x00; //set pointer reg to ‘cmd register'

 config_r[1] = 0x51; // config data byte1

 rangefinder.write(addr, config_r, 2);

 wait(0.07);

 config_r[0] = 0x02; //set pointer reg to 'data register'

 rangefinder.write(addr, config_r, 1); //send to pointer 'read range'

 rangefinder.read(addr, range_read, 2); //read the two-byte range data

 range = ((range_read[0] << 8) + range_read[1]);

 pc.printf("Range = %.2f cm\n\r", range); //print range on screen

 wait(0.05);

 }

}

Working with the SRF08 ultrasonic
rangefinder

• Exercise 3:

 Evaluate the SRF08 datasheet to understand the different control
setup and data conversion options.

 Now configure the SRF08 to accurately return data in inches
measured to a maximum range of 10 feet.

 Note:

 1 inch = 25.4 mm

 1 foot = 12 inches

17

Interfacing multiple devices on an I2C bus

• Exercise 4: Connect both the temperature sensor and the range finder to
the same I2C bus and verify that the correct data can be read by
addressing commands appropriately. Update your screen readout to
continuously display updates of temperature and detected range.

18

Extended Exercises

• Exercise 5: Use an ultrasonic range finder to control the position of
a servo motor. When items are distant, the servo will take a 0
degrees position, but as objects come within range of the SRF08,
the servo will move towards a 180 degrees position.

• Exercise 6: Communicate between two mbeds on an I2C bus.
Program the master mbed to count a value from 0 to 15 and to
broadcast this count value on the I2C bus. The slave mbed should be
programmed to read the I2C data at regular intervals and set the
onboard LEDs to display the binary count value.

19

Summary

• Introducing I2C

• Evaluating simple I2C communications

• I2C on the mbed

• Working with the TMP102 I2C temperature sensor

• Working with the SRF08 ultrasonic rangefinder

• Interfacing multiple devices on a single I2C bus

• Extended exercises

20

