
Description of the mbed Robotracer

Kiyoteru Hayama

Kumamoto National College of Technology

1. Summary1. Summary1. Summary1. Summary

The line follower robot called “robotracer” was designed using the prototyping tool of mbed

(http://mbed.org/) corresponding to the “Robotrace” competition to be held in the micromouse

competition in Japan. There are eight optical sensors, middle six sensors are used for the position

on line, the others are used for detection of start and goal markers. And two unipolar stepper

motors are used for running robot. The position of the robot on the line is detected by the six optical

sensors, and then run by controlling the speed of the left and right motors. The installation of the

development environment of mbed is not needed. The development environment can be used on

Web browser. The mbed is recognized as a USB flash memory is connected to the USB port of the

PC. After compilation the source code, you can download the binary object to the mbed. The binary

object can run by the pressing reset button.

In order to make a robot easily for the purpose of education, custom-made printed circuit board

(PCB) for robotracer is prepared. Figure 1 shows an example of the robot production by using

inexpensive stepper motors and AA batteries for educational use. The PCB also can be used for

competitive robot. The robotracer with high torque stepper motors and small Li-polymer battery

are shown in Fig. 2. The gyro sensor for increasing stability during high-speed operation is also

available.

Fig. 1 Robotracer for educational use with

inexpensive parts.

Fig. 2 Robotracer for competition.

2. 2. 2. 2. Description of theDescription of theDescription of theDescription of the PCB PCB PCB PCB

Figure 3 and 4 shows circuit diagram of PCB for robotracer and circuit design of the PCB,

respectively. There are only six analog input ports in mbed. So, there are only three ports for optical

sensor for the positioning on the line (CN1-p17,p18,p19), excepted for start/goal marker detection

((CN1-p16), for corner marker detection (CN1-p20), and for gyro sensor(CN1-p15).

F
ig

u
re

 3
 c

ir
cu

it
 d

ia
g
ra

m
.

Fig. 4 Circuit design of the PCB

To widen the detection width of the line sensors, two optical sensors are connected parallel of

each, six optical sensors are assigned to three analog ports. The parallel connected photo sensors

are assigned to analog ports. Its detection are switched by the corresponding LED's light emission.

It was difficult to find inexpensive product of gyro sensor that can be used for both competition

and educational. Therefore, a universal area is prepared for the right side of the PCB. The analog

port, power supply and GND are arranged to the front part of the universal area. Moreover, two

pins of CN2-7 and CN2-8 are pulled out on the PCB, assuming to use I2C communication devices.

In order to make motor driver circuit at low cost, exciting coils of stepper motor are directly

connected to power FET module (MP4401), and the excitation pattern of the motor is directly

controlled by four digital output port of mbed. The protection for the back electromotive force of the

motor and current limiting of the motor are not included. Although there is a risk of giving a

damage to mbed for the moment, but it works fine for now in the prototype robot.

In addition, it is equipped that mode select (CN2-1) and start (CN2-2) buttons, and a

piezoelectric buzzer (CN2-3) to inform the marker detection.

3. 3. 3. 3. AAAAssembly of thessembly of thessembly of thessembly of the robotracer robotracer robotracer robotracer

Table 1 shows electronic components for mbed robotracer. The circuit board of robotracer is

made by soldering each component.

Table 1 electronic component for mbed robotracer

Item

number
Description Designators

1 mbed (NXP LPC1768) mbed NXP LPC1768

2 PCB for robotracer

3 1/6-watt Resistors, 1kΩ R1,R2,R3,R4,R5,R6,R7

4 1/6-watt Resistors, 10kΩ R8,R9

5 1/4-watt Resistors, 100Ω R10

6 Electrolytic capacitors, 220µＦ C1,C2

7 Transistors (2SC1815) TR1,TR2

8 Power MOSFET modules (MP4401) MP4401-1,MP4401-2

9 LEDs
LED1,LED2,LED3,LED4,LED5,LED6,LED7,L

ED8

10 Photo-reflectors (LBR-127HLD) PT1,PT2,PT3,PT4,PT5,PT6,PT7,PT8

11 Piezoelectric buzzer SG1

12 Tact switches SET, START

13 Pin socket (20Px2)

14 Battery snap BATT

15 Battery case (AA x 6)

16 Unipolar Stepper motor (SPG20-1362)

17 Tire and wheels (φ40 x 2)

18 Spacer (10mm x 2)

19 Metal sheet for body making

20 Skid

21 （Gyro sensor, if needed） SIG,Vcc,G (in universal area)

It is convenient to use a photo-reflector which became photo transistor paired with LED (Fig. 5).

If not, the side of LED must be covered to avoid the LED light illuminate to the photo transistor

directly. There is a difference of polarity by a product in the photo reflector. In the case of the

photo-reflector (LBR-127HLD), the polarity of the photo transistor is reverse to the designed PCB.

So the photo-reflector should be recomposed as shown in Fig. 5.

Fig. 5 Photo-reflector

Attach the parts to the PCB as a picture of figure 6. The photo-reflectors are mounted on the

bottom side of the PCB, and other parts are mounted on the top side of PCB. Some of the parts, npn

transistors, power MOSFETs, electrolytic capacitance, etc. have polarity, don’t mistake the direction

of the mount of the parts while checking the corresponding pattern of the board and the circuit

diagram.

The electrolytic capacitor with bending legs is stored under the PCB. Marks for wiring of the

stepper motor are based on the color of the wiring of stepper motor (SPG20-1362). The GR1 on the

PCB is for the green wire, the RE1 is for the red wire, the YE1 is for the yellow wire, and the WH1 is

for the white wire for the right stepper motor. The GR2, RE2, YE2, WH2 of each color wires are for

the left stepper motor. The black and blue wires of both stepper motors are connected to power

supply of the B1, B2, B3 and B4. If using the other kind of motors, attach the corresponding wires

with same direction of the motor rotation (The direction of rotation can be also changed in

software).

Gyro sensor is not necessary at low speed running. If you want make robot for high-speed

running, it is preferable to find and install the appropriate sensor to the universal area. After

soldering all parts, it is a good to fix the battery snap with an adhesive, because it is easy to break

in use.

Fig.6 Photo of after assembly of robotracer

The production body to the size of wheels, tires the battery to be used, you assemble the robot.

As shown in figure 7, Height of the PCB and photo-reflectors from the course are about 15mm and

10mm, respectively. Place the center of robot on line as shown in Figure 8, middle of two sensors on

the line is taken to detect about half of line.

Fig. 7 Height of PCB and photo-reflectors. Fig. 8 Relationship of photo-reflector and line.

4. How to work with the 4. How to work with the 4. How to work with the 4. How to work with the samplesamplesamplesample program program program program

For the usage of mbed, please refer to the related books and Web sites. URL of the mbed

homepage is, http://mbed.org/

The sample program is available from the following link published by the author,

https://mbed.org/users/hayama/code/mbedRobotracer_Edu/

Download the sample program by a zip format, then you can import it your mbed workspace.

Compile the sample program and download the binary object to the flash memory in mbed. How to

work the robotracer is follows,

1) After pressing the reset button on the mbed board, the sample program is running.

2) Select the operation mode by pressing the set button. The operation mode is indicated by

LED’s on mbed in binary code.

3) Press start button, then the robotracer operates selected mode.

About the operation modes:

0: Check the sensor level, which is indicated LED’s and sending by serial communication port.

1: Run forward for 500 steps of stepper motor.

2: Turn right for 500 steps.

3 to 7: Run following on line.

To use the serial communication port, the device driver should be installed on PC as shown in

the following URL,

https://mbed.org/handbook/Windows-serial-configuration

In the line following, mode 3 is the lowest speed, and the speed increases with mode number.

However, the stepper motor is more likely to pull-out Increasing with the speed. So that you must

chose suitable speed for running. The robotracer recognizes start and goal position by start/goal

markers indicated at the side of course line. The robotracer stops automatically at the goal position.

In the competition, the configuration of the course is recorded in the memory for the first run,

then, the robotracer runs faster using the course records in order to shorten the time records at the

second run.

The sample program is described as follows,

The definition of the various variables, ticker instances (timer interrupt), buses, digital I / O and

analog inputs are done at first part of the program. The LED's are available for binary display by

giving a value to the "leds" instance, which is bus definition. To rotate the stepper motor,

sequentially gives excitation pattern to the bus defined as “motorR” and “motorL”.

Three analog ports are assigned to parallel connected phototransistors, which are used for line

sensor. For example, "AnalogIn pt12 (p19)" means the analog port of p19 is used to detect analog

value of parallel connected phototransistor of PT1 and PT2. In this case, the analog port can be read

the signal from the either phototransistor corresponding LED light emission, which are defined

"DigitalOut" instance of "ledCout(p9)" and "ledSGout(p10)". (For example, “PT1” is detected when

“ledSGout” is active.)

Duration of the called functions of timer interrupts are defined in the main function at the last

part, such as "timerS.attach_us(&Sensor, 2000)" and "timerM.attach_us(&stepMotor, 400)". The

“Sensor” and “stepMoter” functions for control of the sensor and stepper motors are called every

2000 and 400 micro seconds, respectively.

In the "Sensor" function, variable of "timS" are varied alternately 1 and 0, and the corresponding

phototransistor for line sensor is detected alternately. The start and goal markers are also detected

alternately. The detected analog value is subtract for the value when the LED light is on and off to

eliminate the background noise. Threshold to determine the presence or absence of the line is the

“STH” value defined at the first part of the program. The variable named “sensD” is stored with the

digital value of each bit corresponding to the each optical sensor in line sensor. The position of a line

is changed into the values from "-5" to "5" using pre-defined array of "sensArray", and the value is

stored to "sensDout". The buzzer control is also done in this function.

In the “stepMotor” function, the excitation pattern of the stepper motor is controlled, using

“timR” and “timL” as a counter. "modeR" and "modeL" indicate the state of the direction of rotation,

stop and free of the right and left motors, respectively. The excitation pattern is defined as

"RMOTOR" and "LMOTOR" arrays, and the “patR”and “patL”are the indexes for the arrays.

In the main function, after initialization of variables, the operation mode can be select by the set

switch, and the execution of the selected mode is done by the start switch. “runTurn” function is to

be run by specifying the direction of rotation of the left and right motor, rotation speed, and the

motor steps.

The “run” function controls the running for line following. The argument n and m are the factor

of reference speed and speed control, respectively. In the function, the robot run at half of reference

speed using “runTurn” function initially, then, the robot run at reference speed with speed

difference controlled by the position on the line. If the center of robot shifts from the line, one side

of the motor becomes slower for return to center. For example, when the robot is running right of

the line, the left motor is reduced.

During running for line following, the start/goal and corner markers are detected and generate a

beep. Passage of start marker, detection the intersection, passage of goal marker and stop enough

distance apart from goal position are recognized using the state variable of "frun". To avoid the

misread of a marker and intersection, the determination of the presence of the marker is carried out

by the integrated value of the sensor after passed the distance of line width. The threshold of the

integrated value of the corner and start/goal markers are the "CTH" and "SGTH" defined at initial

part of the program, respectively.

To record the course for the first run, it is better to do each time with the corner marker

detection. For the second run in high-speed, it is good to use the course parameters to determine the

control parameters and speed, such as the distance between markers, curvature, angle, etc.

Finally, the sample program of the mbed robotracer for education is shown in appendix 1.

Appendix 1

//**
//
// mbed Robotracer for education
// (c) Kiyoteru Hayama (Kumamoto National College of Technology)
//
//**
#include "mbed.h"

Serial pc(USBTX, USBRX);

// run parameters
#define STH 0.5 // threshold value for digital photo sensor
#define SGTH 10 // threshold value for start/goal marker
#define CTH 10 // threshold value for corner marker

// pattern table for stepping motor
const unsigned char RMOTOR[]={0x09, 0x0C, 0x06, 0x03, 0x00}; // excitation pattern for left motor
const unsigned char LMOTOR[]={0x03, 0x06, 0x0C, 0x09, 0x00}; // excitation pattern for right motor

const int sensArray[64]={0,5,3,4,1,0,2,0,-1,0,0,0,0,0,0,0,-3,0,0,0,0,0,0,0,-2,0,0,0,0,0,0,0,-5,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

unsigned char pmode=0; // operation mode
volatile float pt1B, pt2B, pt3B, pt4B, pt5B, pt6B, ptSGB, ptCB; // background sensor values
volatile float sens1, sens2, sens3, sens4, sens5, sens6, sensSG, sensC; // sensor values
volatile int sensD,sensDout=0;

volatile int markerSG, markerC, markerX;
unsigned char frun, fmarker;

volatile int spdR,spdL;
volatile unsigned char modeR=0, modeL=0; // run forward both motor
volatile int stepR, stepL; // varilable for set step of motor
volatile unsigned char patR=0, patL=0; // index of motor pattern
volatile int cntR, cntL; // count of motor steps

volatile unsigned char timR=0, timL=0; // timer for motors
volatile unsigned char timS=0; // timer for sensors
volatile int bp=0; // couter for beep

Ticker timerS; // defince interval timer
Ticker timerM; // defince interval timer

BusOut leds(LED4, LED3, LED2, LED1); // for LED display
BusOut motorR(p5, p6, p7, p8); // output for right motor
BusOut motorL(p11, p12, p13, p14); // output for left motor

AnalogIn pt12(p19); // front right sensor, analog input
AnalogIn pt34(p18); // front left sensor, analog input
AnalogIn pt56(p17); // right sensor, analog input
AnalogIn ptC(p20); // left sensor, analog input
AnalogIn ptSG(p16); // left sensor, analog input
AnalogIn gyro(p15); // for Gyro, analog input, reserved

DigitalIn setSw(p21); // set-switch, digital input
DigitalIn startSw(p22); // start-switch, digital input
DigitalOut ledCout(p9); // LED output signal for corner marker
DigitalOut ledSGout(p10); // LED output signal for start/goal marker
DigitalOut buzzer(p23); // buzzer out

//--
// interrupt by us timerS
//--
void Sensor() {
 // read sensors
 // 1st-step:measure background during LED-off,

// 2nd-step: measure reflecting light during LED-on. sensor value is differnce of both.
 timS = !timS;
 if (timS==0){
 pt1B=pt12; // measure all background values
 pt3B=pt34;
 pt5B=pt56;
 ptSGB=ptSG;
 ledSGout=1; // LED-ON
 wait_us(50); // delay
 sens1=abs(pt12-pt1B); // eliminate background
 sens3=abs(pt34-pt3B);
 sens5=abs(pt56-pt5B);
 sensSG=abs(ptSG-ptSGB);
 ledSGout=0; // LED-OFF
 } else{
 pt2B=pt12; // measure all background values
 pt4B=pt34;
 pt6B=pt56;
 ptCB=ptC;
 ledCout=1; // LED-ON
 wait_us(50); // delay
 sens2=abs(pt12-pt2B);
 sens4=abs(pt34-pt4B);
 sens6=abs(pt56-pt6B);
 sensC=abs(ptC-ptCB);
 ledCout=0; // LED-OFF
 }

 sensD=0;
 if (sens1>STH) sensD |= 0x20; else sensD &= ~(0x20);
 if (sens2>STH) sensD |= 0x10; else sensD &= ~(0x10);
 if (sens3>STH) sensD |= 0x08; else sensD &= ~(0x08);
 if (sens4>STH) sensD |= 0x04; else sensD &= ~(0x04);
 if (sens5>STH) sensD |= 0x02; else sensD &= ~(0x02);
 if (sens6>STH) sensD |= 0x01; else sensD &= ~(0x01);
 sensDout=sensArray[sensD];

 // corner and start/goal marker detection
 if (sensSG>STH) markerSG++; else if (markerSG>0) markerSG--;
 if (sensC>STH) markerC++; else if (markerC>0) markerC--;
 // detection of intersection
 if (markerSG>1 && markerC>1) markerX=1; // both marker
 if (markerX==1 && markerSG==0 && markerC==0) markerX=0; // ignore intersection

 // buzzer
 if (bp>0){ // high beep
 bp--;
 if (buzzer==1) buzzer=0; else buzzer=1; // alternate ON-OFF
 }
}

//--
// interrupt by us timerR/L

// motor rotation, mode = 0: free 1: forward 2: reverse 3: break
// right motor rotation
//--
void stepMotor(){

 if (timR>0) timR--; //count down timR when timR=0 do next process
 if (timR==0) {
 timR=spdR;
 if (modeR==1) {if (patR < 3) patR++; else patR = 0; }
 if (modeR==2) {if (patR > 0) patR--; else patR = 3; }
 cntR++; // count up right moter step
 }

 // left motor rotation
 if (timL>0) timL--; / /count down timL when timL=0 do next process
 if (timL==0) {
 timL=spdL;
 //modeL==1;
 if (modeL==1) {if (patL < 3) patL++; else patL = 0; }
 if (modeL==2) {if (patL > 0) patL--; else patL = 3; }
 cntL++; // count up left moter step
 }

 if (modeR==0 || modeL==0) { patR=4; patL=4; } // motor free when mode=0
 motorR= RMOTOR[patR]; // excitation pattern output to right motor
 motorL= LMOTOR[patL]; // excitation pattern output to left motor
}

// ---
// beep
// ---
void beep(int n){
 bp=n; // set beep couter
}

//--
// check sensor value using serial port
//--
void check_sens(){
 while (1){
 pc.printf("sensC :"); pc.printf("%f¥n",sensC);
 pc.printf("sensSG :"); pc.printf("%f¥n",sensSG);
 pc.printf("sens1 :"); pc.printf("%f¥n",sens1);
 pc.printf("sens2 :"); pc.printf("%f¥n",sens2);
 pc.printf("sens3 :"); pc.printf("%f¥n",sens3);
 pc.printf("sens4 :"); pc.printf("%f¥n",sens4);
 pc.printf("sens5 :"); pc.printf("%f¥n",sens5);
 pc.printf("sens6 :"); pc.printf("%f¥n",sens6);
 pc.printf("sensD :"); pc.printf("%d¥n",sensD);
 pc.printf("sensDout :"); pc.printf("%d¥n",sensDout);
 wait (0.5);
 }
}

//--
// break and release motors
//--
void run_release(){
 modeR=0; modeL=0; // motor release
}

void run_break(){
 modeR=3; modeL=3; // mode 0 means break the motor
 wait(0.5);
 run_release();
}

//--
// run and turn
// (mR,mL)=(1,1):forward, (2,1): turn right, (1,2): turn left, (2,2): Reverse
// spd: speed,
// nstep: number of step
//--
void runTurn(int mR,int mL, int spd, int nstep){
 modeR=mR;modeL=mL;
 spdR=spdL=spd;
 cntR=0; stepR=nstep;
 while (cntR<stepR);
}

//-----------------------
// run
// n: run speed, m: factor of reduce speed
//----------------------
 void run(int n, int m){
 int cntGoal=0; // couter for run after goal

 markerSG=0; markerC=0; markerX=0; fmarker=0;
 frun=0;
 runTurn(1,1,n*2,50); // slow start

 while(startSw==1){

 spdR=spdL=n;
 if (sensDout>0){
 spdR+=sensDout*m;
 } else {
 spdL-=sensDout*m;
 }

 // corner marker check
 if (markerX==1) fmarker=0;
 if (markerX==0 && fmarker==0 && markerC>5) fmarker=1;
 if (markerX==0 && fmarker==1 && markerC==0){
 fmarker=0; beep(50);
 }

 // start/goal marker check
 if (frun==0 && markerSG>SGTH) frun=1; // start marker detect
 if (frun==1 && markerSG==0){ // start marker fix
 frun=2; beep(100);
 }
 if (frun==2 && markerSG>SGTH) frun=3; // goal marker detect
 if (frun==3 && markerX==1) frun=2; // ignor intersection
 if (frun==3 && markerSG==0){ // goal marker fix
 frun=4; beep(100);
 cntGoal=cntR;
 }
 if (frun==4 && cntR>(cntGoal+500)) break;
 wait(0.005); // wait 5ms for control loop
 }

 run_break();
}

//--
// main
//--
int main(){

 timerS.attach_us(&Sensor, 2000); // set timer for sensor
 timerM.attach_us(&stepMotor, 400); // set timer for motor

 while (1) {

 // initialize motor
 run_release();

 while (startSw==1) { // program mode selection
 if (setSw==0) {
 wait(0.01);
 beep(50);
 while (setSw==0);
 wait(0.01);
 pmode++;
 if (pmode>7) pmode=0;
 }
 leds=pmode;
 }
 leds=0; beep(50);
 wait(0.5);

 // go selected program
 switch(pmode){
 case 0: check_sens(); break; // check sensors
 case 1: runTurn(1,1,15,500); break; // run forward
 case 2: runTurn(2,1,15,500); break; // turn right
 case 3: run(10,30); break; // run for line following
 case 4: run(8,24); break;
 case 5: run(6,18); break;
 case 6: run(5,15); break;
 case 7: run(4,12); break;
 }
 }
}

