Doxygen Tutorial

Jafar Al-Kofahi

Every file must have a File Header documentation section as described in the Coding Standard
document, the file headers must be documented using the following format:

/**

* @file util.h

* @brief this header file will contain all required
* definitions and basic utilities functions.

*

* @author Dr.Zhao Zhang

*

* @date 2/28/2009

*/

The @file must be used to declare the file name, and then you must use @brief to give a brief
description of your class, it will take the first statement after it as a description (till the fist “.”).
Everything else after that will be taken as a detailed description of the class except when other Doxygen
commands are detected. Use the @author command to specify the author name of this class. And at

the end add the @date with the date the file created.

All functions must have a Function Header documentation section as described in the Coding Standard
document, and you must use the following format for that:

/**

* This method will be used to print a single character to the lcd.
* @author Dr.Zhao Zhang

* @param chrData The character to print

* @date 2/28/2009

*/

The first sentence is a brief description of the function, then the author of the function (not necessary
the same as the author of the file), then list all of your parameters using @param (every parameter
must have @param infront of it), and in the end add the date in which this function was created.

What you should document in the headers for both files and functions is the goal of having them, and
what is their purpose, note that headers should not document any technical details at all. For the files,
there is no technical documentation since this will be achieved by documenting the file entities
(functions, typedefs, global variables...etc). In the other hand, all functions must have technical
explanations documented using inline comments within the function body.

The following are examples of documented methods using Doxygen style in the lcd.c file that you used
in your labs:

/**

* This method will be used to print a single character to the lcd.
* @author Dr.Zhao Zhang

* @param chrData The character to print

* @date 2/28/2009

*/

void lcdWriteAChar (char chrData)
{
PORTA |= (data>>4);
lcdToggleClear (1) ;

PORTA |= (data & 0xO0F);
lcdToggleClear (1) ;

/**

* This method will be used to print a string to the lcd.
* @author Jafar Al-Kofahi

* @param chrString The string to print on the LCD

* @date 2/28/2009

*/

void lcdPutAString (char * chrString)
{
///This will hold the passed string length
int intSize = strlen(chrString);
///This will be used to index the passed string
int intIndex;

///Printout all characters of the passed string
for (intIndex = 0 ; intIndex < intSize ; intIndex++)

{
PORTA |= (data>>4);
lcdToggleClear (1) ;

PORTA |= (data & O0xO0F);
lcdToggleClear (1) ;

Notice how and what we described in the function headers documentation (recall the Documentation
section of the coding standard guidelines document), we described the functionality that the functions
will provide without mentioning any technical details (remember guideline #1 for function headers),
then within the lcdPutAString function we described each variable we used in the function and what it is
used for, and we explained what the for loop will do.

Sometimes, someone (same developer or another one) might have an improvement (performance,
more readable, lesser code, reusing existing code...etc) over the existing code. In such cases, the
developer must add the new code after commenting out the old code, the old code MUST not be
removed but instead it should be commented out till we make sure that the new code perform the
same desired functionality of the previous code, and the developer should document why he/she did
the change by describing the reasoning behind the change and what problem it would solve or what it

would improve. But before describing the change the developer should put the date of the change as a
time line reference and his/her name, so that if someone wanted to discuss the change he can know
with whom to talk too. The following code segment is an example of such scenario (notice the for loop
for printing out the characters).

/**

* This method will be used to print a string to the lcd.
* @author Jafar Al-Kofahi

* @param chrString The string to print on the LCD

* @date 2/28/2009

*/

void lcdPutAString (char * chrString)
{
///This will hold the passed string length
int intSize = strlen(chrString);
///This will be used to index the passed string
int intIndex;

/** 4/2/2009 Dr.Zhao Zhang: Instead of repeating code, and
* since Strings are sequences of characters then we can use
* the lcdPutAChar function */
///Printout all characters of the passed string
for (intIndex = 0 ; intIndex < intSize ; intIndex++)
{

/** 4/2/2009 Dr.zhao Zhang: used lcdWriteAChar

* instead of repeating the same code to printout

* the string value.*/

/**

PORTA |= (chrStringl[intIndex] >> 4);
lcdToggleClear (1) ;

PORTA |= (chrStringl[intIndex] & O0xO0F);
lcdToggleClear (1) ;

*/

lcdWriteAChar (chrString[intIndex]);

Notice that the old code was commented out using comment block and the developer comments was in
a separate block.

The following will guide you through out the process of creating the documentation document of your
project. To run the program go to Start -> All Programs -> doxygen -> Doxywizard

The Doxygen main screen will come up (Figure 1)

=Ed

I Doxygen GUI frontend
File Settings Help

Step 1: Specify the working directory from which doxygen will run

|

Step 2: Configure doxygen using the Wizard andfor Expert tab, then switch to the Run tab to generate the documentation

Wizard | Expert | Run

Topics
P | Provide some information about the project you are documenting
Project
Mode
Output Project name:
Diagrams

Project version or id:

Specify the directory to scan for source code
Source code directory: limitrifdoxygen/mail}1 .5.?!doxywizard ‘

[] scan recursively

Specify the directory where doxygen should put the generated documentation

Destination directory:

Welcome to Doxygen

Figure 1. Main screen

You can use the tool by going through the Wizard steps or for more advanced options the Expert mode
is available, for the requirements of this course you are only required and you must only use the Wizard

when doing your project documentation.

In the Project screen in Stepl you must browse to your Doxygen folder (e.g. C:\Program Files\doxygen),
then for Step 2, you are required to give your project name and for which version the produced
documentation will be, the source directory to read source files from, and the destination directory to

which you want to output your documentation. Make sure you check the “Scan recursively” option to

scan all of your sub-folders. Your screen should be something similar to figure 2. After you finished
entering all the necessary information press Next.

B Doxygen GUI frontend +
File Settings Help

Step 1: Specify the working directory from which doxygen will run
::C:I;Program ﬁilesfdogygen j
Step 2: Configure doxygen using the Wizard andfor Expert tab, then switch to the Run tab to generate the documentation

Wizard | Expert | Run |

Topics

Provide some information about the project you are documenting
Mode
Output Project name: | Test Project
Diagrams .
Project version or id: [1

Specify the directory to scan for source code

Source code directory: Setting;IJafar,fDesktDpﬂabs_fallZUDB

Scan recursively

Specify the directory where doxyagen should put the generated documentation

Destination directory: :ttings/Jafar/Desktop/Doxygen Tutorialf

Figure 2. Screenshot

The next screen will be the Mode screen (figure 3), from the “Select desired extraction mode” select
“Documented entities only” and check “include cross-referenced source code in the output” to do cross-
reference between source code and documentation. Then to optimize the wizard for C, select “Optimize

for C or PHP output” from the “Select programming language to optimize the results for”. Then press
Next.

B Doxygen GUI frontend + Q@

File Settings Help

Step 1: Specify the working directory from which doxygen will run

E :@gram #ilesfdg{ygen | Select. ..

Step 2: Configure doxygen using the Wizard andfor Expert tab, then switch to the Run tab to generate the documentation

Wizard | Expert | Run

Topics

Project [Select the desired extraction mode:
Mode : o

Output (%) Documented entities only
Diagrams O AllEntities

Include cross-referenced source code in the output

Select programming language to optimize the results for
() Optimize for C++ output

(O Optimize for C+-+/CLI output

() Optimize for Java or C# output

(%) Optimize for C or PHP output

O Optimize for Fortran output

() Optimize for YHDL output

Figure 3 Mode Screen

After that you will be taken to the Output screen (figure 4), to choose the output type for your
documentation. You will have the options to output your documentation to HTML, LaTeX, Man, RTF,
and XML, for this course you must present your documentation as HTML with a navigation tree. To do
so, make sure you check the HTML output format option, and then select “with frames and a navigation
tree”

B Doxygen GUI frontend + Q@@

File Settings Help

Step 1: Specify the working directory from which doxygen will run

]V(-Z:I‘Program'l;ilesj-d‘ﬂyrgen | Select. .. l

Step 2: Configure doxygen using the Wizard andfor Expert tab, then switch to the Run tab to generate the documentation

| Wizard | Expert | Run

Topics
Project Select the output format(s) to generate
Mode HTML
Output
Diagrams O plain HTML

() prepare for compressed HTML {.chm)

|
\
|
|
|
\
\ : 1
® iwith frames and a navigation tree
[] with search function (requires PHP enabled web server)

[] Latex
as intermediate Format for hyperlinked PDF
as intermediate Format for PDF
as intermediate format For PostScript
[] Man pages

[] rich Text Format (RTF)
R

Figure 4. Output screen

With that done, the only thing left is to run the tool to generate your documentation, for this you need
to click on the Run tab (figure 5), after going to the tab press the “Run doxygen” button and your
documentation will be generated according to your settings. With this step done you would have
produced the required documentation files.

B Doxygen GUI frontend +

File Settings Help

Step 1: Specify the working directory from which doxygen will run

]V('ZV:)‘brogramﬁﬂes@ygen | Select. .. I

Step 2: Configure doxygen using the Wizard andfor Expert tab, then switch to the Run tab to generate the documentation

Wizard | Expert = Run \

Run doxygen | Status: not running [Show configuration] [Save log...

Output produced by doxygen

[S L M Wy VO v O S Wy M= =1
|Settings/Jafar/Desktop/labs_fallz008/labs_fallZ008/LabS/programs/util.c... A!
|Preprocessing C: /Documents and
‘iSectings/Jafar/Deskcop/labs_fal12008/1abs_fall2008/Lab5/programs/util.h...
Parsing file C:/Documents and
|Settings/Jafar/Desktop/labs_ fallZ008/labs fallZ008/LabS/programs/util._h...
iPreprocessing C: /Docunents and
:Settinqs/JafarfDesktop/labs_fall2003/labs_fallZOOS/LabG/programs/lcd.c...
Parsing file C:/Documents and
|Settings/Jafar/Desktop/labs_fallZ008/labs_fall2008/Labé/programs/led.c...
|Preprocessing C: /Documents and {
fSettings/Jafar/Desktop/labs_fallZOOSflabs_fallZOOS/LabS/programs/lcd.h._.
'Parsing file C:/Documents and
|Settings/Jafar/Desktop/labs_fallZ008/labs fallZ008/Labé/prograns/lcd.h...
'Preprocessing C: /Documents and
:Sectings/Jafar/Deskcop/labs_fallZOOS/labs_fallZOOS/Lab6/programs/util.c...
Parsing file C:/Documents and
|Settings/Jafar/Desktop/labs_fallz008/labs_fallZ008/Lab6/programs/util.c...
|Preprocessing C: /Documents and
ESectings/Jafar/Deskcop/labs_fal12008/1abs_fall2008/Lab6/programs/util.h...

Show HTML output

LT

Figure 5. Run screen

