M&M’s® Color Sorter

Final Project Report

LAURENT CHRIS GOUDET
December 11, 2009

Abstract:

Color sorting is a recurrent problem in the food industry. Such machines are necessary for
sorting grains, seeds or coffee. This project, entitled “M&M’s® Color Sorter”, develops a proof of
concept for color sorting by using candies. Given a random assortment of M&M’s® candies,
consisting of up to 8 different colors, the device will be able to sort them by color in a reasonable
time (maximum of 10 seconds per candy) and with accuracy higher than 80% (4 candies out of 5
sorted correctly).

Introduction

Color detection is an important problematic in a wide range of industrial areas. For instance,
powders, granules or liquids as well as metals, glass, types of paper, plastics and all kinds of textiles
are checked and detected according to significant color features.

A typical color sensor is based on a photodiode which measure the intensity reflected by the
object for a red, green and blue light source. More advanced systems may use more colors or more
specifics colors, such orange light sources of different wavelength in order to detect the hue of an
orange (the fruit). Some sensors, like the one used in this project, used the same principle but with 3
or more photodiodes with green, red and blue filters in front of them. In this case the light source
may be white.

The prototype

Different mechanical designs are possible for a candy sorter but these designs are similar: a
first actuator is moving the candies one by one in the “sorting zone” and one or many actuators are
sorting them.

Regarding this project, the mechanical design have been found on YouTube' and recreated
under Solidworks® (all the mechanical drawings can be found in Appendix B). It was chosen because
it is one of the most mechanically straightforward M&M’s® sorter designs, since it includes only one
mobile part (the rotor). A 3D representation of the prototype can be found below (Figure 1):

0

Figure 1: 3D representation of the prototype

! http://www.youtube.com/watch?v=r7TRyHnvJsM

The non-sorted M&M'’s® are introduced though a feeder tube (1). The rotor (2) then moves
one candy under the color sensor board, mounted at (3). The color sensor determines the color of
the candy, and then the rotor moves the candy into the channel (4) corresponding to the
determined color. By simply reversing the rotor’s direction, the candy is pushed down the channel
and into the container (5) below.

The parts have been made by a 3D printer, thanks to Mike from the ECF. They have then
been painted in white, black and blue. These colors are not completely arbitrary: the white color of
the rotor is used for the white calibration — explained later — and the black color of the base is used
to detect when the feeder tube is empty. Some photos of the final prototype can be found below
(Figures 2, 3 & 4).

Figure 3: The servo and the battery pack

Figure 4: The color sensor and the PCB board

The Hardware

Electrical overview

The overall electrical of the system is depicted in Figure 5 (below):

Figure 5: Electrical overview of the system

The color sensor and the servo, which is connected to the rotor, are both connected to the
PIC, which is driving both of them.

Color Sensor

The color sensor which is used for detecting the color of the candies is the TCS230 sensor
module from TAOS®. It combines configurable silicon photodiodes and a current-to-frequency
converter on single monolithic CMOS integrated circuit, as shown on the Figure 6 (below).

r—-—-——---"-"""""¥"”"7/”""”"¥7” T

| | Output
—» | . Current-to-Frequency I

; Photodiode
Light) I Array Converter |
| I
L T __________ ﬂ —_
82 83 S0 81 OE

Figure 6: Functional block diagram of the TCS230

The light-to-frequency converter reads an 8 x 8 array of photodiodes. Sixteen photodiodes
have blue filters, 16 photodiodes have green filters, 16 photodiodes have red filters, and 16
photodiodes are clear with no filters.

The inputs to the device can be chosen so that the sensor detects one of these colors, and in
response the device outputs a square wave (50% duty cycle) with frequency directly proportional to
light intensity (irradiance) of the chosen color.

In our application, this sensor needs to be used in association with a lens, to focus the object
to analyze, and a white light source (white LEDs). For that reason, it has been bought with the
daughterboard AXE045 from PIXACE (Figure 7). The development of a daughterboard for this sensor
would have been more expensive because the CMOS lenses are hard to find in small quantities.

Figure 7: The AXE045 daughterboard for TCS color sensor from PIXACE

The PCB board

The whole system has first being designed and tested on a Harris board, a development
board using a PIC 18F452 microcontroller. Because it was interesting to have a final device that can
be easily used and moved, a PCB board has then been developed to hold the sorting program.

This PCB board is composed of a microcontroller, a 3.3V voltage regulator, a push button, a
bi-color LED, some connectors and few passives components. The schematic of the board is available
is appendix C. In order to reduce the number of components, there is not any crystal on the board:
the software used the internal clock of the microcontroller.

The microcontroller has been chosen regarding the following specifications:

e Compatibility: be compatible with the current development board (a Harris board). This
board is using a PIC 18F452 so the microcontroller should had to be picked up into the PIC
18F family in order to keep the same hardware architecture (same Timers) and the same C
Compiler (C18), to keep the same libraries.

e Package: be small enough to fit on a 1.2-in x 1.2-in PCB board but can easily be soldered
(thus not a QFN or a TQFP package)

e Functionalities: have a Low Voltage Detection module. The system is designed to be used on
batteries so a low voltage detection feature is interesting in order to inform the user that he
has to replace the batteries.

e Price: be, of course, as cheap as possible

Based on these constrains, the microcontroller which has been chosen is the PIC 18K23K20. A 6
pins connector has been designed on the PCB board to program it (using the ICSP technology).

The PCB board itself has been developed using the software suite Proteus ISIS & ARES by
Labcenter Electronics. It has then been manufactured by 4PCB.com, using the bare bone service. In
consequence, the board is a 2-layer FR-4 0.062” thick without any legends (Figure 8).

SERVO

II

¥ -
ob e f
0 Va
—~ P

3 :

’ -]

"3

|== '...,OLOP SENSOR

Chris LG
2089

Figure 8: The PCB board, from the CAD software to the board

The Software

General operation

The general operation of the embedded software is depicted by the flowchart below (Figure 9):

‘ START ’

-
Initializations (clock,
1/0s, LEDs, color
sensor, LVD, PWM Colors’ Thresholds,
generator) which determine
the color of the
candy
White calibration s A\
(reference values for
red, green & blue Move the candy to Stop green led
light intensities) the correct channel blinking
.
Y Y
)
Infinite loop Move the rotor back
slowly to push the
candy into the vial
Y
Move candy under
color sensor and
move a little back Y
the rotor to set up
Sy Move the rotor back Re-start green led
to its initial position blinking
Y
)
Red, Green & Blue -
intensities’
measures
\ Y
<4 dooj anunu|
)
Convert RGB color
space to HSL
) .“

Figure 9: General operation of the embedded software

The frequency meter

The software implements a frequency meter for measuring the output frequency of the
color sensor. In fact, as explained before, the output of the color sensor is a square wave (50% duty
cycle) with frequency directly proportional to light intensity (irradiance).

For that purpose, the timer 1 of the microcontroller is used. This latter is set to count the
low-to-high transitions on its external source input, RCO (Port C, bit 0). The timer is started and, after
a certain amount of time, stopped. The result is a number, in the timer 1 register, representing the
output frequency of the color sensor.

The “amount of time” to wait until stop the timer have been determined by
experimentation. In fact, the maximum output frequency of the color sensor is, according to the
datasheet, 600 kHz but in practice this maximal frequency is closer to 2 kHz. As a consequence, the
capture time could have been set according to this maximum but, in practice, the output of the color
sensor never reaches this value.

The white calibration

The first step in order to use the color sensor is to proceed to a white calibration. In fact, as
shown on the diagram below (Figure 10), the relative responsivity of the red, green and blue
photodiodes are not the same. As a consequence, a white calibration is necessary in order to
normalize the values given by the color sensor.

PHOTODIODE SPECTRAL RESPONSIVITY

1
f\ Nor‘fmalizel.-d to

0.9 f Clear
Clear
s - 1,./ @ 680 ri'nm
: v =950
~ Red \ Ta=25°C

0.6 7 ‘/\

NENAREEA
L I\
L /
A1 | [AN
N VAV A
AL N

300 500 700 900 1100
A - Wavelength - nm

Relative Responsivity

Figure 10: Photodiode Spectral Responsivity of the Color Sensor

Another benefit of this white calibration is to get extremum values for the red, green and
blue intensity. In fact, the output frequency of the color sensor depends of the light intensity. By
measuring this frequency for the red, green and blue light reflected by a white surface, one can
knows the maximums values of light intensity.

Thus, to achieve the white calibration, the light intensity reflected by the rotor (which is
white for this purpose) is measured by the red, green and blue photodiodes. These values are then
stored in order to be used as a reference the futures color detections.

The color space conversion

The color information given by the color sensor uses the RGB space, i.e. there is one value
for the red intensity, one for the green intensity and one for the blue intensity. This color space can
be represented as a cube, whose axes are defined by those 3 primary colors (Figure 11).

Figure 11: Graphical representation of the RGB color space

Such color space is not compliant with our application because it will imply to use 3
thresholds values for each color. Furthermore, in this color space the result of the detected color will
depend of luminosity conditions, i.e. if there is more lights in the room where the device is used the
values from the color sensor will be different.

For resolving this problem, the embedded software proceeds to a color space conversion to
the HSL color space. The HSL (Hue, Saturation & Luminance) space is a related representation of
points in the RGB color space, which attempt to describe colors more naturally than RGB. It can be
arranged as a double-cone as shown below (Figure 3).

Figure 12: Double-cone representation of the HSL color space

In our application, all the benefit of this color space the hue value. The hue, which is equal to
the ratio of each primary (RGB) color to the others, specifies the base color and can be represented
as a circle (Figure 4).

Figure 13: Circle representation of the Hue

Thresholds values for candies’ colors can be thus easily define from this circle and only one
number is necessary. Furthermore, the hue value will not depend of the luminosity conditions so the
reliability of the color detection process will be better.

The colors’ thresholds

The colors’ thresholds have been set using the hue value of the HSL color space. These
values have been found by experimentation. The following table (Table 1) shows some experimental
results of the hue value. Some values in this table are negatives because 360° is equivalent to 0°, so
350° is equivalent to -10° (useful for the calculations).

Red Orange Yellow Green Blue Purple Pink
1 -0.55 12.03 44.04 127.46 216.53 | 298.05 | 346.62
2 3.33 10.42 42.84 121.95 223.60 | 272.68 | 349.90
3 3.24 10.64 45.00 123.70 220.14 | 289.62 | 352.02
4 5.70 10.22 49.10 122.51 216.31 | 285.65 | 353.57
5 -5.26 11.13 42.85 122.53 223.32 | 272.25 | 357.50
6 8.54 11.62 44.23 121.71 220.04 | 274.26 | 352.28
7 9.44 11.47 44.64 128.78 221.17 | 293.74 | 353.45
8 4.28 12.29 45.63 124.76 216.32 | 277.35 | 344.74
9 5.06 12.32 43.45 122.56 218.46 | 298.33 | 346.34
10 3.08 12.06 44.25 126.36 218.38 | 289.23 | 346.62
Average 3.69 11.42 44.60 124.23 219.43 | 285.12 | 350.30
Standard
deviation 4.24 0.78 1.81 2.50 2.71 10.29 4.13

Table 1: Experimental values of hues (after color space conversion)

For each average value of hue, the medians with the two closer values have been calculated
and set as thresholds for the corresponding color.

Some remarks about this table: first, these tests have been done without real Pink and
Purple M&M'’s because these colors have not been found. The Pink and Purple colors are thus
detected from printed drawings.

Then, one can see that there is not any overlap between the colors by using the hue circle
conversion. That implies that, except in case of an error from the mechanism, the candies will be
expected to be sort with a 100% of accuracy.

The brown color is not represented is this table. In fact, the brown color is not even
represented on the hue circle. But, this color can be detected by using the luminance value of the
HSL color space. Few others tests have been necessary to find a good threshold value of luminance
for the brown color.

At last, one more “color” have been added: the color corresponding to the case where there
is not any M&M'’s left in the feeder tube. For that purpose, the base of the mechanism is in black
and a threshold has been set to detect this color, namely “END” color. As the one for the brown
color, this threshold is based on the luminance value.

The PWM Generator

The PWM Generator is used to generate a PWM signal to drive the servo. The position of the
servo is defined by the width of a pulse (in range 0.5ms to 2.5ms). For instance, sending a 1.5ms
pulse to the servo, tells the servo that the desired position is 90 degrees. In order for the servo to
hold this position, the command must be sent at about 50Hz, or every 20ms (Figure 14).

—
.

; 0.5mS |

Minimum 0.5mS

! 20ms !
Center 1.5mS | |
: 1.6mS ' ;
' 20mS '
Maximum 2.5mS | |
: 25mS ' :
' 20mS !

Figure 14: Position of the servo vs. width of the pulse

For this purpose two timers are used: the timer O is set to generate an interrupt every 20ms
and the timer 3, which also used interrupts, is set to a value which represent the width of the high
period of the PWM signal (Figure 15). The code for this PWM generator have been taken over and
adapted from the code of the lab 7.

Timer 3

<_(PWvaalue)

—|

<«—Timero—p

Figure 15: Implementation of the PWM generator

The other functionalities

A blinking feature has been implemented to allow the green and the red LEDs to blink when
the system is running. The green LED stop blinking and stay on when there is no more M&M'’s in the
feeder tube. The red LED, it, is blinking when a low voltage have been detected (functionality
explained below).

In order to optimize the code of the program and the resources of the PIC, this blinking
feature is using the same timer’s interrupts than the PWM generator (Timer 0). Given that the
period of the timer 0 is set to 20ms, a counter is waiting until 25 interrupts before flip the LED
output. The LED is thus blinking at a frequency of 1 Hz.

The program also implements the Low-Voltage Detect module embedded into the PIC. This
is a programmable circuit that allows the user to specify both a device voltage trip point and the
direction of change from that point. If the device experiences an excursion past the trip point in that
direction, an interrupt flag is set.

Once a low voltage has been detected, the green LED is turned off and the red LED is blinking to
indicate that the batteries need to be replaced. To reduce the number of false detections a counter
has been set so the device will enter in the “low batteries mode” only after 10 low voltage
detections. In fact, the servo is sometime pulling a lot of current and, as a consequence, the voltage
on the board is dropping. It is also why the voltage detection limit has been set, by experimentation,
to only 2.3V.

Results & Conclusions

In order to confirm the results of the project, experiments have been conducted a relatively
large quantity of M&M’s. Each color of M&M'’s has been tested 50 times. The results of these
experiments are shown in the chart below (Figure 14):

Accuracy by color

W RED ™ ORANGE YELLOW & GREEN mBROWN MBLUE mPINK = PURPLE EEND

100.00% 98.02% g5 7gy 100.00% 100.00% 100.00%

96.67% 95.83%

M&M's colors

Figure 16: Accuracy by color of the sorter

Some conclusions can be drawn from these experiments. First, the little inaccuracy between
the red and the orange M&M'’s is due to an error of detection. Sometimes the M&M'’s are not well
positioned under the color sensor and, since these colors are quite similar, the color is not well
detected (red M&M'’s become orange and orange M&M'’s become red).

This issue could maybe be solve by using another parameter, the luminance, to distinguish the
difference between the red and the orange color, or by improving the positioning of the M&M'’s
under the color sensor.

The others inaccuracy are explained by the fact that, sometimes, the M&M'’s are “jumping” to
the next channel. This phenomenon is due to the rotor, which is a little twisted. This problem could
be solved by using another material for the rotor, more rigid.

Beside these little inaccuracies, the project is a success. The system meets its specifications (at
least 4 M&M'’s out of 5 well sorted) and the final aspect of the prototype is a success. Since the
device is working on batteries, one possible improvement will be to optimize the power
consumption by, for instance, entered the microcontroller in sleep mode when the feeder tube is
empty.

References

= Color sensors applications:
http://www.baumerelectric.com/be27.htm|?L=1

= RGB color space:
http://en.wikipedia.org/wiki/RGB color space

= HSL color space:
http://www.chaospro.de/documentation/html/paletteeditor/colorspace hsl.htm

= PIC 18F23K20 datasheet:
http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en530013

= TCS230 color sensor datasheet
http://www.taosinc.com/productdetail.aspx?product=3

Appendixes

Part list

Mechanical drawings

Schematic of the PCB board

Code of the embedded software (PIC)

44 43

M&M Sorter — Parts List

Prototype:

Item name: Servo Quantity: 1

Specification: Standard hobby servos with cross control horn.
Dim. 41x20x40mm

Retail price: $4.90 + shipping at
http://www.hobbypartz.com/kahaoubrmo14.html

Item name: Plastic Vials Quantity: 9

Specification: Crystal clear polystyrene vials with snap caps. 7
Dram: 2-1/16" in height with an inside diameter of 1”

Retail price: $3.95 + shipping at
http://www.acornnaturalists.com/store/SNAP-CAP-VIALS-clear-
plastic-7-dram-12-per-package-P421C0.aspx

Item name: Plastic Tube Quantity: 1

Specification: Clear Rigid Acrylic Plastic Tube 5/8” outside
diameter with 1/16” wall 1’ length

Retail price: $ 2.58 + shipping for 3’ at
http://www.arcatapet.com/item.cfm?cat=470

Item name: Velcro Fasteners Quantity: 8

Specification: Velcro Fasteners dots 5/8"

Retail price: $2.49 for 15 at Office Depot
http://www.officedepot.com/a/products/570109/Velcro-Sticky-
Back-Fasteners-Coins-5/

Item name: Color Sensor Quantity: 2

Specification: PICAXE Color Sensor

Retail price: $44.95 + shipping at
http://www.sparkfun.com/commerce/product info.php?product

s id=8924

Item name: Flat Ribbon Quantity: 1

Specification: Mouser Part #: 517-1M-1021-010-12

Retail price: $3.18 + shipping at Mouser
http://www.mouser.com/ProductDetail/3M/1M-1021-010-3365-
0120-00-AB-00-
0/?qs=dMyV3I0KP7N%252bDtnULMV4QQ%3d%3d

Hardware: screws, standoffs, spacers:

Item name: 3/8” Standoffs Quantity: 6

Specification: #4-40 x 3/8” Threaded Standoffs

Retail price: Found in the stockroom

Item name: 1” Standoffs Quantity: 4

Specification: #4-40 x 1” Threaded Standoffs.

Retail price: Found in the stockroom

Item name: Spacers Quantity: 6

Specification: #4 x 1/4” Thru-hole Aluminum Spacers.

Retail price: Found in the stockroom

Item name: %" Flat Machine Quantity: 4

Specification: #4-40 x 1/4” Flat Head Machine Screws

Retail price: Found in the stockroom

Item name: %” Pan Machine Quantity: 8

Specification: #4-40 x 1/4” Pan Head Machine Screws

Retail price: Found in the stockroom

Item name: %" Pan Machine Quantity: 4

Specification: #4-40 x 1/2” Pan Head Machine Screws

Retail price: Found in the stockroom

Item name: 1” Pan Machine Quantity: 4

Specification: #4-40 x 1” Pan Head Machine Screws

Retail price: Found in the stockroom

Item name: Hex Nuts Quantity: 4

Specification: #4-40 Hex Nuts

Retail price: Found in the stockroom

Item name: Metal screws Quantity: 8

Specification: #2 x 3/16” Pan Head Sheet Metal Screws

Retail price: $6.20 at www.microfasteners.com

PCB Board:

Resistors

2 R1,R3 10k (0603)

1 R2 68 (0603)
Capacitors

1 G 22uF (SMD)
2 C3,c4 100nF (0603)
1 G5 10uF (SMD)

1 Ul PIC18F23K20
1 U2 L1117-3

1 U3 LED-BICO
Connectors

1 BATTERY CONN-SIL2

1 COLOR SENSOR CONN-DIL10

1 ICSP CONN-SIL6

1 P1 PUSH BUTTON
1 SERVO CONN-SIL3

Subtotal components:

Miscellaneous

1 BATTERY HOLDER
1 PCB BOARD + SHIPPING

Total PCB:

Global budget:

e Prototype: $64.30
e PCB board: $75.06

652-CR0603-JW-103GLF (Mouser)

301-68-RC (Mouser)

647-UCD1C220MCL6GS (Mouser)
81-GRM39Y104Z16D (Mouser)
647-UWF1C100MCL1GB (Mouser)

579-PIC18F23K20-1/SO (Mouser)

Found in MicroP’s lab
859-LTST-C155GEKT (Mouser)

Found in MicroP’s lab
517-975-01-10 (Mouser)
Found in MicroP’s lab
Found in MicroP’s lab
Found in MicroP’s lab

12BH331/CS-GR (Mouser)
4PCB.com Bare Bone Service

$0.03
$0.04

$0.09
$0.06
$0.06

$2.31

$0.20

$5.94

$1.45
$67.67

$75.06

Laurent Goudet
lgoudet@hmc.edu
909-480-5341

Thickness:1/16"
Quantity: 2
Color: black if avaible

UNLESS OTHERWISE SPECIFIED: NAME DATE
DIMENSIONS ARE IN INCHES DRAWN
TOLERANCES: .
FRACTIONAL * CHECKED TITLE:
ANGULAR: MACH+ BEND *
TWO PLACE DECIMAL ENG APPR.
THREE PLACE DECIMAL * MEG APPR.
INTERPRET GEOMETRIC QA.
PROPRIETARY AND CONFIDENTIAL TOLERANCING PER:

THE INFORMATION CONTAINED IN THIS - o COMMENTS:
MATERIAL

DRAWING IS THE SOLE PROPERTY OF SIZE | DWG. NO. REV

<INSERT COMPANY NAME HERE>. ANY

REPRODUCTION IN PART OR AS A WHOLE FINISH aS e

WITHOUT THE WRITTEN PERMISSION OF NEXT ASSY USED ON

ZINEEDT ~ARAD ARIY RLARAS LIEDEw 1€

1 1 1 APPLICATION 1 | . |
SolldWOrkS Educatlonal Llcense DO NOT SCALE DRAWING SCALE: 1:1 IWE|GHT SHEET 1 OF 1
. 1
Instructional Use Only 4 3 2 1

Thickness: 1/16"
Quantity: 2
Color: yellow if avaible

PROPRIETARY AND CONFIDENTIAL

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>. ANY
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF

~INIGEDT ~ANDANIV NANE LIEDES I

SolidWorks Educational License

Instructional Use Only

UNLESS OTHERWISE SPECIFIED: NAME DATE
DIMENSIONS ARE IN INCHES DRAWN
TOLERANCES: .
FRACTIONAL * CHECKED TITLE:
ANGULAR: MACH* BEND *
TWO PLACE DECIMAL + ENG APPR
THREE PLACE DECIMAL #* MEG APPR.
INTERPRET GEOMETRIC QA.
TOLERANCING PER: COMMENTS:
MATERIAL SIZE |DWG. NO. REV
.
A |Vial Holder
NEXT ASSY USED ON
APPLICATION DO NOT SCALE DRAWING SCALE: 1:1 |WEIGHT: | SHEET 1 OF 1
I
4 3 2 1

Thickness: 1/16"
Quantity: 2
Color: blue if avaible

UNLESS OTHERWISE SPECIFIED: NAME DATE
DIMENSIONS ARE IN INCHES DRAWN

TOLERANCES: .
FRACTIONAL + CHECKED TITLE:

ANGULAR: MACH+ BEND *
TWO PLACE DECIMAL ENG APPR.

+

THREE PLACE DECIMAL * MFG APPR.
INTERPRET GEOMETRIC QA.
PROPRIETARY AND CONFIDENTIAL TOLERANCING PER:
COMMENTS:
MATERIAL SIZE |DWG. NO. REV

THE INFORMATION CONTAINED IN THIS

DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>. ANY A S
eparator

REPRODUCTION IN PART OR AS A WHOLE
NEXT ASSY USED ON

WITHOUT THE WRITTEN PERMISSION OF

So | | d Wor kS E/Ia:ag;t’\i“aﬁﬂglmti cense APPLICATION DO NOT SCALE DRAWING SCALE: 1:2 |WEIGHT: | SHEET 1 OF 1
I

Instructional Use Only ' 4 3 2 1

Thickness: 1/16"
Quantity: 2
Color: white if avaible or another light color

UNLESS OTHERWISE SPECIFIED: NAME DATE
DIMENSIONS ARE IN INCHES DRAWN
TOLERANCES: .
FRACTIONAL * CHECKED TITLE:
ANGULAR: MACH+ BEND #
TWO PLACE DECIMAL + ENG APPR
THREE PLACE DECIMAL #* MEG APPR.
INTERPRET GEOMETRIC QA.
PROPRIETARY AND CONFIDENTIAL TOLERANCING PER:

o CING COMMENTS:

THE INFORMATION CONTAINED IN THIS MATERIAL SIZE IDWG. NO REV

DRAWING IS THE SOLE PROPERTY OF

<INSERT COMPANY NAME HERE>. ANY
REPRODUCTION IN PART OR AS A WHOLE FINISH O O r
NEXT ASSY USED ON

WITHOUT THE WRITTEN PERMISSION OF

~INIGEDT ~ANDANIV NANE LIEDES I

SOI |dWO r kS Ed u Cati on al L | cense APPLICATION DO NOT SCALE DRAWING SCALE: 1:1 |WEIGHT: | SHEET 1 OF 1
I

Instructional Use Only 4 3 2 1

Thickness: 1/16"
Quantity: 4

Color: green if avaible

PROPRIETARY AND CONFIDENTIAL

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>. ANY
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF

~INIGEDT ~ANDANIV NANE LIEDES I

SolidWorks Educational License

Instructional Use Only

R0.002
©0.003
N $0.016
ol
N
0.026
0.020
D
% R0.013
0.003 |
~—— 0.017 —
UNLESS OTHERWISE SPECIFIED: NAME DATE
DIMENSIONS ARE IN INCHES DRAWN
TOLERANCES: TITLE:
FRACTIONAL * CHECKED .
ANGULAR: MACH* BEND #
TWO PLACE DECIMAL * ENG APPR.
THREE PLACE DECIMAL * MEG APPR.
INTERPRET GEOMETRIC QA.
TOLERANCING PER: COMMENTS:
MATERIAL SIZE | DWG. NO. REV
Aube Holder H
APPLICATION DO NOT SCALE DRAWING SCALE: 2:1 |WEIGHT: | SHEET 1 OF 1
4 3 2 ! 1

Thickness: 1/16"
Quantity: 2
Color: green if avaible

PROPRIETARY AND CONFIDENTIAL

THE INFORMATION CONTAINED IN THIS
DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE>. ANY
REPRODUCTION IN PART OR AS A WHOLE

WITHOUT THE WRITTEN PERMISSION OF

~INIGEDT ~ANDANIV NANE LIEDES I

SolidWorks Educational License

Instructional Use Only

©0.015
/
D
N
0.026 R0.013
0.020
>
N
0.003 = =
R0.008
~—— 0.017 —
UNLESS OTHERWISE SPECIFIED: NAME DATE
DIMENSIONS ARE IN INCHES DRAWN
TOLERANCES: TITLE:
FRACTIONAL * CHECKED .
ANGULAR: MACH* BEND *
TWO PLACE DECIMAL + ENG APPR.
THREE PLACE DECIMAL * MEG APPR.
INTERPRET GEOMETRIC QA.
TOLERANCING PER: COMMENTS:
MATERIAL SIZE |DWG. NO. REV
Aube Holder|L
APPLICATION DO NOT SCALE DRAWING SCALE: 2:1 |WEIGHT: | SHEET 1 OF 1
I
4 3 2 1

I B I C I D I E I I G I H J K
3.3V
u2
BATTERY 11117-3
1 3 1 3.3V
o1 . Vi Vo .
O 2
+ +
CONN-SIL2 o COLOR SENSOR
C5 N C1l
10uF 22uF ;'SDS 2 o0 3 \s/,;
—_ ' ' S1 3 00 g S2
- oo,
TOE 2 1 5ol OUTPUT
Y% Y%
L L L 1150l 10
- - - | CONN-DIL10 |
3.3V
SERVO Ul
o ; \P/XVM g RAO/ANO/C12INO- RCO/T10SO/T13CK E
o5 ——| RAL/AN1/C12IN1- RCLT10SIICCP2A [—=
o —£—| RA2/AN2IC2IN+VREF-/ICVREF RC2/CCPL/PIA [—5
CONN.SIL3 =—| RAS/ANS/CLIN+/VREF+ RCB3/SCK/SCL [—=
- =—| RA4/TOCKI/C10UT RC4/SDISDA [—
e To—| RAS/AN4/SS/HLVDIN/C20UT RC5/SDO [—=
- o RAGIOSC2/CLKO RCE/TX/CK [—=
© O, RA7/0OSC1/CLKI RC7/RX/DT f—=
i 3 n
= ~ 25— RBU/AN12/INTO/FLTO
o — <5 RBUANLO/INTL/C12IN2-/P1C
3.3V 3.3V <5 RB2IANB/INT2/P1B
N\ Ny U3 A 2| RB3/AN9/CCP2B/C12IN3-
< . LED-BICO £2—{ RB4/ANLLKBIO/PID
o £=—| RBS/KBIL/PGM
S5 RBG/KBI2IPGC 1
P1 RB7/KBI3/PGD RE3/MCLR/VPP
° PUSH BUTTON PIC18F23K20
R1 VDD=3.3V 3.3V 3.3V
STaRT 10k VSS=GND A \
ICSP
o]-L__VPPIMCLR
R2 o] 2 VoD °
R3 68 o3 _GNb
10k Ol 4 _PGD
o-—>—Pec ——C3 —-C4
O——8—FCM 100nF 100nF
CONN-SIL6
rLeNnameE: MM Sorter.DSN DATE:
DESIGN TITLE: M&M Sorter 12/8/2009
PAGE:
PATH: C:\MM Sorter.DSN 1 of 1
BY: Chris LG REV: 1 TIME: 2:16:21 AM
| B | C | D | E | | G | H J K

C:\Users\Laurent\Desktop\MicroP"s final project\No More Blue M&Ms!\Software\M&M"s Project.c

/
* E155 MicroP"s Final Project - M&"s Sorter
* FILENAME: M&M*"s Project.c
* Version: 2, Updated on 12/06/2009
*
* DESCRIPTION: This program is able to sort up to 8 different colors of M&M*"s.
* For that, it drives a TCS230 color sensor to detect the color of the candy and
* a servo to sort it once its color have been detected.
K
* Laurent Chris Goudet - Harvey Mudd College
/
#include <p18f23k20.h>
#include <timers._h>
#include <delays.h>
#include <capture.h>
/
* 1/0 Definitions
/
// Color Sensor
#define LED LATAbits.LATA7 // White LEDs
#define SO LATCbits.LATC1 // Output frequency select
#define S1 LATCbits.LATC3 // Output frequency select
#define S2 LATCbits.LATC2 // Photodiode type select
#define S3 LATAbits.LATA6 // Photodiode type select
#define OE LATCbits.LATC4 // Enable output (active low)
// Servo
#define PWM LATAbits.LATAO // PWM signal output
// Misc.
#define LED R LATAbits.LATA4 // Green status LED
#define LED_G LATAbits.LATAS // Red status LED
#define START PORTAbits.RA3 // Start push button
/
* Macros Definitions
/
// Friendly names for colors
#define RED 1
#define ORANGE 2
#define YELLOW 3
#define GREEN 4
#define BROWN 5
#define BLUE 6
#define PINK 7
#define PURPLE 8
#define END 9
// Macros used for the color space conversion
#define MAX(a, b) (((a) > (b)) ? (a) : (b))
#define MIN(a, b) (((a) < (b)) ? (a) : (b))
/
* Global Variables Definitions
/

// Reference values from the white calibration
unsigned int red_ref;

unsigned int green_ref;

unsigned int blue_ref;

// Absolute values of light intensities
unsigned int red_abs;

unsigned int green_abs;

unsigned int blue_abs;

// Normalized values (in range O to 1) of light intensities
float red;

float green;

float blue;

// Hue and luminance values from the color space conversion

1

C:\Users\Laurent\Desktop\MicroP"s final project\No More Blue M&Ms!\Software\M&M"s Project.c

float hue;
float luminance;

// Width of the high period of the PWM signal
unsigned volatile int PWM_value;

// Variables used for the green led blinking
unsigned volatile char green_led_on;
unsigned volatile char led_count;

unsigned volatile char stop_blinking;

// Variable used for the Low Voltage Detector
unsigned volatile char lvd_count;

/
* Prototype Definitions
/
void initialization(void); // System initialization
void white_calibration(void); // White calibration of the color sensor
void selec_color(int color); // Photodiodes filters selection
unsigned int get_data(void); // Get data from the color sensor
void convert_RGB_to HSL(void); // Color space conversion
char which_color(void); // Colors®" thresholds
void high_isr(void); // Interrupts catch up function
// Move the servo to a specific angle with a certain speed
void move_to_angle(unsigned char angle, unsigned char speed);
/
* interrupt_at_high_vector(void) - Function placed at the interrupt vector and
* transferring control to the ISR proper.
*
/
#pragma code high_vector=0x08
void interrupt_at_high_vector(void)
_asm GOTO high_isr _endasm
b
#pragma code /* return to the default code section */
/
*
* main(void) - Main routine
*
/

void main(void)

unsigned char color; // The color of the candy
initialization(); // Initiazation color sensor & PWM Generator
while(!START); // Wait for a user input
white_calibration(); // White calibration of the color sensor
green_led_on = 1; // Start main loop => green LED blinking
while(1){
move_to_angle(0,0); // Move servo to initial position
move_to_angle(30,1); // NMove candy under color sensor
move_to_angle(20,1); // Move rotor back to set up the candy

// RED intensity measure

selec_color(RED); // Set photodiodes filters to Red

red_abs = get_data(): // Measure the ouput frequency of the color sensor
// The measured value must not be greater than the calibration value
if(red_abs>red_ref){red_abs=red_ref;}

// Normalization of the value (in range O to 1)

red = ((float) red_abs) /7 ((float) red_ref);

// GREEN intensity measure

selec_color(GREEN); // Set photodiodes filters to Green

green_abs = get_data(); // Measure the ouput frequency of the color sensor
// The measured value must not be greater than the calibration value
if(green_abs>green_ref){green_abs=green_ref;}

// Normalization of the value (in range O to 1)

2

C:\Users\Laurent\Desktop\MicroP"s final project\No More Blue M&Ms!\Software\M&M"s Project.c
green = ((float) green_abs) / ((float) green_ref);

// BLUE intensity measure

selec_color(BLUE); // Set photodiodes filters to Blue

blue_abs = get_data(); // Measure the ouput frequency of the color sensor
// The measured value must not be greater than the calibration value
if(blue_abs>blue_ref){blue_abs=blue_ref;}

// Normalization of the value (in range O to 1)

blue = ((float) blue_abs) / ((float) blue_ref);

convert_RGB_to HSL(); // Color space conversion
color = which_color(); // Detect candy"s color from thresholds

if(color==END){ // If no more candies => wait for refill
stop_blinking = 1; // Stop green led blinking
while(!START); // Wait for start button
stop_blinking = O; // Re-start led blinking

else{

// Move the candy to the corresponding channel
move_to_angle(60+15*color,1);
// Move back the rotor to push the candy into the vial
move_to_angle(15*color,1);
// Move the rotor back to its initial position
move_to_angle(0,0);

}

¥ 7/ while(d)
Y 7/ main(Q)

void initialization(void) - Initialization of the clock, the 1/0s, the color
sensor, the green led blinking, the Low Voltage Detector and the PWM generator

ok R XN

/
void initialization(void)

// Clock initialization

OSCCONbits.IRCF2 = 1; // Set internal clock to 16 Mhz
// PORTA Configuration

PORTA = 0;

LATA = 0;

// => Configure all inputs as digital 1/0s
ANSEL = OXEO;

// => PORTA directions configuration

// ==> RAO: PWM (output)

// ==> RA3: Start button (input)

// ==> RA4: Red LED (output)

// ==> RA5: Green LED (ouput)

// ==> RA6: S3 (output)

// ==> RA7: White LEDs (ouput)

TRISA = OxOE;

// PORTC Configuration

PORTC = 0x00;

// => PORTC directions configuration
// ==> RCO: Output color sensor (input)
// ==> RC1: SO (output)

// ==> RC2: S2 (output)

// ==> RC3: S1 (output)

// ==> RC4: /OE (output)

TRISC = OxE1;

// Color sensor initialization
SO = 1; S1 = 1; // Output scalling set at full speed
OE = 0; // Enable color sensor output

// Green led blinking initialization

green_led_on = 0; // Green led off
led_count = 0; // Reset green led blinking counter
stop_blinking = O; // Green led blinking off

// High / Low Voltage Dectector (HLVD) intialization
// => Bit 7: VDIRMAG = 0 => Event occurs when voltage falls below trip point
// => Bit 4: HLVDEN = 1 => HLVD enabled

C:\Users\Laurent\Desktop\MicroP"s final project\No More Blue M&Ms!\Software\M&M"s Project.c

// => Bit 3-0: HLVDL<3:0> = 1000 => Voltage Detection Limit set to 2.6V

HLVDCON = 0x15; // Configure HLVD module
Ivd_count = 0; // Reset detections counter
PIR2bits_HLVDIF = O; // Reset interrupt flag

// PWM Generator initialization
PWM = 0; // Set PWM output in low state

// => Timer O is fixed and generate an interruption every 20ms
OpenTimerO(TIMER_INT_ON &

TO_16BIT &

TO_SOURCE_INT &

TOPS 12);

// => Timer 1 stand for the width of the modulation
OpenTimer3(TIMER_INT_ON &

T3_16BIT_RW &

T3_SOURCE_INT &

T3 _PS 11 &

T3_SYNC_EXT_OFF);

// => Timer 0 value: 20ms

// Fosc / 4 = 4 Mhz

// With 1:2 prescaler => 2 Mhz => T = 0.5us
// 20ms / 0.5us = 40,000 = 0x9C40
WriteTimerO(OxXFFFF - 0x9C40);

// => PWM_value (width of the high period)

// PWM_value = 2000 => High period = 0.5ms => Servo angle = 0°
// PWM_value = 10000 => High period = 2.5ms => Servo angle = 180°
PWM_value = 6000;

// => Clear interrupt flags

INTCONbits.TMROIF = O; // Timer O interrupt flag
PIR2bits.TMR3IF = O; // Timer 3 interrupt flag

// => Enable interrupts

INTCONbits.PEIE = 1; // Enable peripherical interrupts
INTCONbits.GIE = 1; // General interrupt enable switch

3
/
* void white_calibration(void) - Proceed to the white calibration of the color
* sensor => measure the light intensity reflected by a white surface for each
* color filters (red, green & blue)
/
void white_calibration(void)
// RED
selec_color(RED) ; // Set photodiodes filters to RED
red_ref = get_data(); // Get a reference value (maximum red light intensity)
// GREEN
selec_color(GREEN); // Set photodiodes filters to GREEN
green_ref = get_data(); // Get a reference value (maximum green light intensity)
// BLUE
selec_color(BLUE); // Set photodiodes filters to BLUE
blue_ref = get _data(); // Get a reference value (maximum blue light intensity)
}
/
* void selec_color(int color) - Select the color of the filters in front of the
* photodiodes
*
/
void selec_color(int color)
{
if(color == RED){ S2 = 0; S3 = 0; } // Red filters
else if(color == GREEN){ S2 = 1; S3 = 1; } // Green fTilters
else if(color == BLUE){ S2 = 0; S3 = 1; }+ // Blue fTilters
Delayl0TCYx(2); // 1lps necessary delay for updating filters color
3
/

C:\Users\Laurent\Desktop\MicroP"s final project\No More Blue M&Ms!\Software\M&M"s Project.c

* unsigned int get_data(void) - Frequency meter which measure the output
* frequency of the color sensor (input = RC1)

/
unsigned int get data(void)
{
unsigned int value; // The measured value
LED = 1; // Power up the white LEDs
DelaylOKTCYx(10); // 5ms power-up delay for the LEDs
OpenTimerl(TIMER_INT_OFF &

T1 16BIT_RW &

T1_SOURCE_EXT &

T1 PS 11 &

T1_OSC1EN_OFF &

T1_SYNC_EXT_OFF); // Start timer 1 for counting pulses on RC1
Delayl10KTCYx(30); // Wait 15ms to get a compliant number
value = ReadTimerl(); // Read the value from the timer 1
CloseTimerl(); // Stop the timer 1
LED = O; // Turn off the white LEDs
return value; // Return the measured value

b
/
*
* void convert_RGB_to HSL(void) - Convert RGB (in range O to 1) to HSL
* (in range 0 to 1)
/
void convert_RGB_to_HSL(void)
{
// This algorithm is based on the numerous algorithms available on Internet
// regarding RBG to HSL space conversion and have been adapted to the
// requirements of this program
float fmax, fmin;
fmax = MAX(MAX(red, green), blue);
fmin = MIN(MIN(red, green), blue);
luminance = fmax;
if (fmax == red){
hue = (green - blue) / (fmax - fmin);
3
else if (fmax == green){
hue = 2 + (blue - red) / (fmax - fmin);
else{
hue = 4 + (red - green) / (fmax - fmin);
}
hue = hue * 60; // The ouput is the hue circle (in range 0 to 360)
if (hue < 0) {hue += 360;}
b
/
*
* char which_color(void) - Determine what is the color of the M&M*"s regarding
* the hue and the luminance
/
char which_color(void)
{
// These thresholds values have been determined from the hue circle and
// adjusted by some experimentations
int color;
if(luminance < 0.023) color = END; // No candy
else if(luminance < 0.25) color = BROWN;
else if(hue >= 8 && hue < 28) color = ORANGE;
else if(hue >= 28 && hue < 84) color = YELLOW;
else if(hue >= 84 && hue < 172) color = GREEN;
else if(hue >= 172 && hue < 252) color = BLUE;
else if(hue >= 252 && hue < 318) color = PURPLE;
else if(hue > 320 && hue < 350) color = PINK;
else color = RED;
return color;
3
/
* void move_to_angle(unsigned char angle, unsigned char speed) - This function

allow the servo to be moved to a specific angle with an adjustable speed

5

C:\Users\Laurent\Desktop\MicroP"s final project\No More Blue M&Ms!\Software\M&M"s Project.c

/
void move_to_angle(unsigned char angle, unsigned char speed)
{
unsigned int new_angle;
// PWM_value = 2000 => High period = 0.5ms => Angle = 0°
// PWM_value = 10000 => High period = 2.5ms => Angle = 180°
// The new angle is being calculated based on these extremum
new_angle = 2000 + ((unsigned int)angle * 45);
// The current PWM_value is incremented until it reaches the new angle value
while(PWM_value !'= new_angle){
iT(PWM_value < new_angle){
PWM_value ++; // +1 step
else{
PWM_value --; // -1 step
b
if(speed!=0){ // 1T speed = 0 => full speed
DelaylKTCYx(speed); // Else wait for "speed” x 250us
3
DelaylOKTCYx(254); // Then wait for that the servo reaches its final position
b
/
*
* high_isr(void) - Interrupts sub-routine. Process Timer O, Timer 1 and ADC
* interrupts
/
#pragma interrupt high_isr
void high_isr(void){
// Timer O interrupt routine
iT (INTCONbits.TMROIF){
// Green LED blinking
// The timer 3 interrupt occurs every 20ms so the state of the green LED
// is changing (when blinking is on) every 25 * 20 ms = 0.5s
led_count++;
if(led_count >= 25){
iT(PIR2bits _HLVDIF){ // 1T a Low Voltage have been detected
LED_G = O; // => The green LED is turn off
LED_R = ~ LED_R; // And the red LED is blinking
if(lvd_count < 10){ // If 10 detections => stop detections
Ivd_count ++; // Increment detection counter
PIR2bits_HLVDIF = O; // The LVD interupt flag is reset
b
}
else if(green_led_on){ // 1T the green led is on
LED R = 0O; // The red LED is turn off
if(stop_blinking){
LED G = 1; // If blinking off => always on
b
else{
LED_G = ~ LED_G; // 1T not => the green LED is blinking
}
b
else{
LED G = O; // 1T green led off => output to low
LED R = 1; // The red led is turn on by default
led_count = 0; // Then the counter is reset
s
// PWM Generator
// Timer O interrupt => begining of a new period
PWM = 1; // PWM output in high state
WriteTimer3(OxFFFF - PWM_value); // Set high state period
WriteTimer0(0Ox63BF) ; // Reload Timer 0 value (20ms)
T3CONbits.TMR30ON = 1; // Turn on Timer 3 (high period timer)
INTCONbits.TMROIF = O; // Reset Timer O interrupt flag
s
// Timer 3 interrupt routine
else{
PWM = 0; // PWM output in low state
T3CONbits.TMR30N = O; // Stop Timer 3 (high period timer)
PIR2bits.TMR3IF = O; // Reset Timer 3 interrupt flag
b

C:\Users\Laurent\Desktop\MicroP"s final project\No More Blue M&Ms!\Software\M&M"s Project.c

	E155 Project Report.pdf
	Bill of Materials FOR REPORT
	Mecanics
	Base - Sheet1
	Vial Holder - Sheet1
	Separator - Sheet1
	Rotor - Sheet1
	Tube Holder H - Sheet1
	Tube Holder L - Sheet1

	Schematic
	Code

