
Freescale Semiconductor
Application Note

Document Number: AN4381
Rev. 0, 12/2011

Contents

Introduction . 1
FlexTimer overview . 2

2.1 FlexTimer features. 2
Quadrature incremental encoder. 3
FTM initialization for rotor position measurement using a
quadrature encoder . 4

5 Position and speed calculation example 5
5.1 Alignment . 5
5.2 Position calculation . 5
5.3 Speed calculation . 6

6 Conclusion. 9
7 References . 9
8 Acronyms and abbreviated terms 9

Configuring the FlexTimer for
Position and Speed Measurement
with an Encoder
by: Matus Plachy

System Application Engineer,
Freescale Czech System Center
Rožnov pod Radhoštem, Czech Republic
1 Introduction
Electronically controlled 3-phase permanent-magnet
synchronous motors (PMSM) are becoming more and
more popular in a variety of industrial and appliance
motor-control applications, thanks to features such as
high efficiency, reliability, and power density. When
high dynamic performance is required, the vector control
approach of the PMS motor is used. The rotor position
information is critical for successfully performing the
vector control algorithm. Quadrature encoders are
widely used in industrial motor control applications as
precise rotor position sensors mounted directly on the
motor shaft. This application note describes the
procedure for configuring the FlexTimer module for
decoding these quadrature encoder signals for position
and speed measurement. It also gives an example of the
position and speed calculation.

The FlexTimer is a complex, general-purpose timer
module that also possesses special features dedicated to
a motor control application. Besides decoding the

1
2

3
4

© Freescale, 2011. All rights reserved.

FlexTimer overview
quadrature encoder signals, it can be configured for generation of the six-signal pulse-width modulation
(PWM) to control 3-phase electric motors. This process is described in AN3729, “Using FlexTimer in
ACIM/PMSM Motor Control Applications.” The FlexTimer module is a component of a peripheral set of
some Freescale products, such as the high-end S08, ColdFire V1, and Kinetis families. Some devices have
more FlexTimer modules implemented on the chip.

2 FlexTimer overview
The FlexTimer module (FTM) is a two to eight channel timer that supports input capture, output compare,
and the generation of PWM signals to control electric motor and power management applications. The
FTM time reference is a 16-bit counter that can be used as an unsigned or signed counter.

2.1 FlexTimer features
The FTM features include:

• Selectable source clock

— Source clock can be the system clock, the fixed frequency clock, or an external clock

— Fixed frequency clock is an additional clock input to allow the selection of an on-chip clock
source other than the system clock

— Selecting an external clock connects the FTM clock to a chip level input pin, therefore allowing
it to synchronize the FTM counter with an off-chip clock source

• Prescaler divide-by 1, 2, 4, 8, 16, 32, 64, or 128

• 16-bit counter

— It can be a free-running counter or a counter with an initial and final value

— The counting can be up or up-down

• Each channel can be configured for input capture, output compare, or edge-aligned PWM mode

• Input capture mode

— In input capture mode, the capture can occur on rising edges, falling edges, or both edges

— In input capture mode, an input filter can be selected for some channels

• Output compare mode, in which the output signal can be set, cleared, or toggled on match

• All channels configurable for center-aligned PWM mode

• Ability to combine each pair of channels to generate a PWM signal (with independent control of
both edges of the PWM signal)

• Ability of FTM channels to operate as pairs with equal outputs, pairs with complementary outputs,
or independent channels (with independent outputs)

• Deadtime insertion available for each complementary pair

• Generation of triggers (match trigger)

• Software control of PWM outputs

• Up to 4 fault inputs for global fault control

• Configurable polarity for each channel
Configuring the FlexTimer for Position and Speed Measurement with an Encoder, Rev. 0

Freescale2

Quadrature incremental encoder
• The generation of an interrupt per channel

• The generation of an interrupt when the counter overflows

• The generation of an interrupt when the fault condition is detected

• Synchronized loading of write-buffered FTM registers

• Write protection for critical registers

• Backwards compatible with TPM

• Testing of input captures for a stuck at zero and one conditions

• Dual-edge capture for pulse- and period-width measurement

• Quadrature decoder with input filters, relative position counting, and interrupt on position count or
capture of position count on an external event

3 Quadrature incremental encoder
The quadrature incremental encoder is a position feedback device that provides incremental counts. The
incremental encoder provides relative information, where the feedback signal is always referenced to a
start position. This is different from absolute encoders, where each position is defined as a combination of
N bits (binary or the more common Gray encoding), while the number of bits determines the resolution.
Thus, the absolute position information is provided immediately after powering up the system. The
information is usually passed over some serial communication interface to the controlling MCU. Because
of the latency caused by decoding and encoding the position information, an absolute encoder for some
applications (high-speed motion control) cannot be used. In such a case, an incremental encoder is the
better choice, because the signals are directly processed by the controlling MCU’s on-chip hardware.

The incremental encoders used in the motion-control applications are usually based on optical technology.
The light emitted by an LED passes through the slots in metal discs and is detected by phototransistors.
The output signals for an encoder with 1024 pulses are shown in Figure 1.

Figure 1. Quadrature encoder output signals

There are three output signals. The Phase A and Phase B signals consist of a series of pulses, the phase
shifted by 90° (therefore the term quadrature is used). The third signal, here called “Index,” provides the
absolute position information. In motion control, it is used to check the pulse counting consistency. This
means that after each revolution, the value of the counted pulses is captured and compared against the
defined value. If there is a difference detected, the control algorithm then has to perform the position offset
compensation. A possible loss of pulse should be detected and handled by the motor control application.
The deviation in the real and measured values of the rotor position will influence the generation of the
vector of the stator magnetic flux. An incrementing deviation during a long-term run of the motor yields
significant torque drop, resulting in even a complete stop of the motor.
Configuring the FlexTimer for Position and Speed Measurement with an Encoder, Rev. 0

Freescale 3

FTM initialization for rotor position measurement using a quadrature encoder
There are also encoders with an index signal that have more pulses per one revolution, or even two index
signals.

The quadrature decoder in the MCU counts rising and falling edges of both the phase signals. Therefore,
although the specification of the encoder quotes, for example, 1024 pulses per revolution, this value is
multiplied by 4. So the internal quadrature decoder counter counts 4096 edges, as is shown in Figure 1.
The internal logic of the quadrature decoder evaluates the direction of the rotation by increasing or
decreasing the counter value.

4 FTM initialization for rotor position measurement
using a quadrature encoder

The example of FTM initialization shown below is part of the motor control application described in
DRM128, PMSM Vector Control with Encoder on Kinetis and is specific to the Kinetis K40 in a 144-pin
package. Therefore, the module clock enabling and input pin configuration can be different on the other
MCU families. There are three FTM modules on the Kinetis K40 MCU: one 8-channel module dedicated
to generating the 6-channel PWM for running the 3-phase PMSM, and two 2-channel modules, one of
them configured for decoding the quadrature encoder signals. The third FTM module is unused. Of course,
the FTM with two channels allows the use of only the Phase A and Phase B signals to decode the position
information. The processing of the index signal together with the phase signals can only be done in an FTM
with three or more channels.

This document focuses below on the use of an FTM with two channels for position detection and the speed
calculation. The capturing of the position count on an external event (index signal) has to be processed by
software associated with the interrupt.

The external signals are routed to the input pins reflecting the hardware solution that is built on the Tower
System modules (TWR-MK40 and TWR-MC-LV3PH), as it is described in DRM128. Next, it is assumed
that the encoder has 1024 pulses. Please refer to the “Quadrature Decoder Mode” section of the Kinetis
K40 Sub-Family Reference Manual for more details, as there are more options on setting the quadrature
decoding mode based on the available encoder signals, as well as the method of counting-up and -down
the edges.

The following is an initialization example for the Kinetis MK40X256VMD100:
//enable the clock for FTM1

 SIM_SCGC6 |= SIM_SCGC6_FTM1_MASK;
//enable the counter

 FTM1_MODE |= FTM_MODE_FTMEN_MASK;
//enable the counter to run in the BDM mode

 FTM1_CONF |= FTM_CONF_BDMMODE(3);
//load the Modulo register and counter initial value

 FTM1_MOD = 4095;
 FTM1_CNTIN = 0;

//configuring FTM for quadrature mode
 FTM1_QDCTRL |= FTM_QDCTRL_QUADEN_MASK;

// start the timer clock, source is the external clock
 FTM1_SC |= FTM_SC_CLKS(3);

//configuring the input pins:
 PORTA_PCR8 = PORT_PCR_MUX(6); // FTM1 CH0
 PORTA_PCR9 = PORT_PCR_MUX(6); // FTM1 CH1
Configuring the FlexTimer for Position and Speed Measurement with an Encoder, Rev. 0

Freescale4

Position and speed calculation example
5 Position and speed calculation example
The example of position and speed calculation is performed with the numbers represented in Q1.31 two-s
complement, signed fractional format. So all physical quantities were scaled to the < –1,1) interval, where
–1 corresponds in the MCU to 232 and 1 to 231 – 1.

For more information on the calculations in the fractional format and variables scaling, see DRM105,
3-phase PMSM Vector Control using Quadrature Encoder on MCF51AC256, and DRM102, PMSM Vector
Control with Quadrature Encoder on Kinetis.

5.1 Alignment
Because the quadrature encoder is a relative position sensor, it is necessary to know the exact position of
the rotor before the motor is started. One possible and easy method is to align the rotor to a predefined
position. A DC voltage is applied on the stator winding, so that the stator and rotor magnetic fields become
aligned to one axis and the rotor is moved to a known position. After the alignment, the FTM counter value
is set to zero. The alignment process referenced in the vector control algorithm is described in more detail
in DRM128 and DRM105.

5.2 Position calculation
There is a direct proportion between the number of pulses counted by the quadrature encoder and the
position. This proportion can be described by a simple equation:

Eqn. 1

Where:

theta_el_frac is the electrical position scaled to Q1.31 fractional format.

counter_value is the value of the FlexTimer internal counter FTM1_CNT that counts the edges of the input
signals.

position_scale is the value by which the counter_value has to be multiplied in order to get the electrical
position. The way to determine its value is described below.

First of all, it is necessary to understand that the quadrature encoder gives information on the mechanical
position, while to the vector control algorithm requires the electrical position. The relationship is given by
the following formula:

Eqn. 2

Where:

el [rad] is the electrical position.

theta_el_frac = counter_value × position_scale

el = pp × mech
Configuring the FlexTimer for Position and Speed Measurement with an Encoder, Rev. 0

Freescale 5

Position and speed calculation example
pp [–] is the number of pole pairs of the motor.

mech [rad] is the mechanical position, determined by the quadrature encoder.

It is obvious that the electrical position is changed pp – times faster than the mechanical position, and the
same relationship also holds between the electrical and mechanical angular speeds. Figure 2 depicts the
relationship of the mechanical position given by the encoder and the electrical position, considering the
six-pole motor (pp = 3) and the quadrature encoder with 1024 pulses. The FTM counts 4 × 1024 edges,
giving the total value of 4095 (the 4096th match to zero) per one mechanical revolution.

Figure 2. Relationship between the electrical position in Q1.31 format and the FTM counter value

Furthermore, since the Q1.31 numeric format is used, the maximum position corresponds to the maximum
number of the selected number format; that is, for 231–1(~), the minimum position value is 232 (~ –).

Considering the assumptions mentioned above, the value of position_scale can be calculated as:

Eqn. 3

The term in the numerator represents the full range of the Q1.31 fractional numeric format from –1 to
1 – 2-31 that is expressed in the MCU as 232.

The position information is necessary for the calculation of the vector control algorithm. Therefore, the
position value is calculated each time the fast (current) control loop is calculated. In the application
described in DRM128, this is in the ADC1 conversion complete interrupt service routine (ISR).

5.3 Speed calculation
One of the easiest methods to calculate the speed is a position’s derivative with respect to time. In a
real-time application running on the MCU, the derivation is substituted by the difference in the value of
the mechanical position, captured within a fixed time period. The precision of the speed value calculation

position_scale =
232

ENCODER_PULSES x 4

pp
Configuring the FlexTimer for Position and Speed Measurement with an Encoder, Rev. 0

Freescale6

Position and speed calculation example
depends on the generated time base, because each small deviation in the time base is amplified by the
difference calculation, and so noise is introduced to the speed value. The formula of the angular speed
calculation is:

Eqn. 4

Where:

el [rad.s-1] is the electrical angular speed.

K [rad] is the actual electrical rotor position.

K-1 [rad] is the electrical rotor position in the previous step.

Tsample [s] is the sampling period, the time between when the K and K-1 values are periodically captured.

In the application described in the DRM128 (running on the Kinetis K40), the time base is generated by
the Periodic Interrupt Timer (PIT). The PIT is configured to generate an interrupt every 1 ms. In order to
keep the required precision of the time base, it is necessary to assign the highest priority to the PIT
interrupt. Even so, a small deviation (up to 6 machine cycles) is introduced to the time base because of the
different latency between the interrupt request and entering the interrupt service routine when the interrupt
request is generated from the application main or from another interrupt. This deviation is then balanced
by implementing the moving average filter on the calculated angular speed value.

The calculation of the speed is performed in the PIT ISR. It is assumed that by implementing the same
principle as used for the angular position calculation, the calculation of the electrical angular speed that is
executed by the MCU is performed according to the following equation:

Eqn. 5

Where:

omega_el_frac is the mechanical angular speed in Q1.31 fractional format.

theta_el_fracK is the actual electrical position in Q1.31 fractional format.

theta_el_fracK-1 is the electrical rotor position in the previous step, in Q1.31 fractional format.

Similar to the position calculation, the scaling is also required for the speed. However, as will be shown
below, the determination of the omega_scale is not as easy as the calculation of the position_scale value.

The term omega_scale is calculated as:

Eqn. 6

el =
K – K – 1

Tsample

omega_el_frac = (theta_el_fracK – theta_el_fracK – 1) × omega_scale

omega_scale =
232 × max

max × Tsample
Configuring the FlexTimer for Position and Speed Measurement with an Encoder, Rev. 0

Freescale 7

Position and speed calculation example
Where:

max [rad] is the maximal position ().

max [rad.s-1] is the maximum electrical angular speed.

Tsample [s] is the time between when the position values are captured.

The maximum value of the speed reflects the maximum speed of the motor (considering also
field-weakening, if implemented in the application) plus an additional margin (at least 10%) to prevent an
overflow during the calculation.

The value of the omega_scale calculated according to Equation 6 exceeds the range of a 32-bit number.
Therefore, an adjustment has to be made (a right shift by N bits to fit to the desired range), and so
Equation 5 needs to be modified to:

Eqn. 7

The number of bits (N) by which the value of the omega_scale needs to be shifted is calculated by the
following two equations:

Eqn. 8

Eqn. 9

In the Q1.31 fractional format, the adjusted scale is then defined as:

Eqn. 10

After the arrangement, Equation 7 is then calculated in the MCU in two separate equations, for better
lucidity with the help of a temporary variable:

Eqn. 11

Eqn. 12

omega_el_frac = (theta_el_fracK – theta_el_fracK – 1) × (omega_scale × 2–N) × 2N

omega_scale_adj =

log
max

max × Tsample

log(2)

N = omega_scale_shift = ceil(omega_scale_adj)

omega_scale_adj_frac = 232 ×
max

max × Tsample

× 2omega_scale_shift

tmp_frac = (theta_el_frac – theta_el_frac) × omega_scale_adj_frac
K – 1K

omega_el_frac = tmp_frac >> omega_scale_shift
Configuring the FlexTimer for Position and Speed Measurement with an Encoder, Rev. 0

Freescale8

Conclusion
6 Conclusion
This application note describes one of the easier possible methods of calculating of the position and speed
from quadrature encoder signals. There are also other methods for the position and speed calculation, for
example, a method based on the implementation of the angle tracking observer. These are described in
other application notes.

7 References
Table 1 lists the documents to which this application note refers.

8 Acronyms and abbreviated terms
Table 2 contains abbreviated terms used in this document.

Table 1. References

Doc order
number

Title Availability

AN3729 Using FlexTimer in ACIM/PMSM Motor Control Applications www.freescale.com

DRM102 PMSM Vector Control with Single-Shunt Current-Sensing Using
MC56F8013/23

DRM105 PM Sinusoidal Motor Vector Control with Quadrature Encoder

DRM128 PMSM Vector Control with Quadrature Encoder on Kinetis

varies K40 Sub-Family Reference Manual

Table 2. Acronyms and abbreviated terms

Term Meaning

ADC Analog-to-digital converter

FTM FlexTimer module

ISR Interrupt service routine

LED Light emitting diode

PIT Periodic interrupt timer

PMSM Permanent magnet synchronous motor

PWM Pulse-width modulation
Configuring the FlexTimer for Position and Speed Measurement with an Encoder, Rev. 0

Freescale 9

Document Number: AN4381
Rev. 0
12/2011

How to Reach Us:

Home Page:
www.freescale.com

Web Support:
http://www.freescale.com/support

USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
+1-800-521-6274 or +1-480-768-2130
www.freescale.com/support

Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support

Japan:
Freescale Semiconductor Japan Ltd.
Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com

Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com

For Literature Requests Only:
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or 303-675-2140
Fax: 303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com

Information in this document is provided solely to enable system and software
implementers to use Freescale Semiconductor products. There are no express or
implied copyright licenses granted hereunder to design or fabricate any integrated
circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to
any products herein. Freescale Semiconductor makes no warranty, representation or
guarantee regarding the suitability of its products for any particular purpose, nor does
Freescale Semiconductor assume any liability arising out of the application or use of any
product or circuit, and specifically disclaims any and all liability, including without
limitation consequential or incidental damages. “Typical” parameters that may be
provided in Freescale Semiconductor data sheets and/or specifications can and do vary
in different applications and actual performance may vary over time. All operating
parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Freescale Semiconductor does not convey any license
under its patent rights nor the rights of others. Freescale Semiconductor products are
not designed, intended, or authorized for use as components in systems intended for
surgical implant into the body, or other applications intended to support or sustain life,
or for any other application in which the failure of the Freescale Semiconductor product
could create a situation where personal injury or death may occur. Should Buyer
purchase or use Freescale Semiconductor products for any such unintended or
unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and
its officers, employees, subsidiaries, affiliates, and distributors harmless against all
claims, costs, damages, and expenses, and reasonable attorney fees arising out of,
directly or indirectly, any claim of personal injury or death associated with such
unintended or unauthorized use, even if such claim alleges that Freescale
Semiconductor was negligent regarding the design or manufacture of the part.

For information on Freescale’s Environmental Products program, go to
http://www.freescale.com/epp.

Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, Inc.
All other product or service names are the property of their respective owners.
© Freescale Semiconductor, Inc. 2011. All rights reserved.

http://www.freescale.com/epp

	1 Introduction
	2 FlexTimer overview
	2.1 FlexTimer features

	3 Quadrature incremental encoder
	4 FTM initialization for rotor position measurement using a quadrature encoder
	5 Position and speed calculation example
	5.1 Alignment
	5.2 Position calculation
	5.3 Speed calculation

	6 Conclusion
	7 References
	8 Acronyms and abbreviated terms

